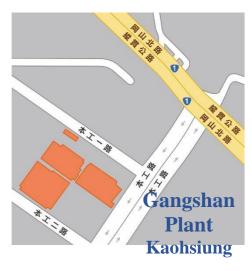


2023


# 溫室氣體盤查報告書

**GHG Inventory Report** 



### SHEH KAI PRECISION CO., LTD.





- ♦ Plant: Gangshan Plant
- ♦ Main Production Items:
- Bi-metal Screws
- High Strength Stainless Screws
- O Concrete Screw Anchors
- Special Fasteners
- Stainless Steel Screws
- Double End Bolts/Screws
- Stainless Steel Point Tail/Flat Tail Screws
- Automotive Fasteners
- Stainless Steel Threat Cutting Carriage Bolt Screws Type17

| Plant           | Main Business        | Address                                        |
|-----------------|----------------------|------------------------------------------------|
| Luzhu Plant     | Stainless Steel Wire | No. 161, Minyou Rd., Beilin Vil., Luzhu Dist., |
|                 |                      | Kaohsiung City                                 |
| Packaging Plant | Products Packaging   | No. 1, Bengong W. 1st Rd., Benzhou Vil.,       |
|                 |                      | Gangshan Dist., Kaohsiung City                 |
| Bi-Metal        | Drill Bit            | No. 70-29, Shishan, Neigh. 23, Dacuo Vil.,     |

| Ī | Material Plant | Manufacturing   | Zhunan Township, Miaoli County                 |
|---|----------------|-----------------|------------------------------------------------|
|   |                | Equipment       |                                                |
| L |                | Development     |                                                |
| Ī | Zhunan Plant   | Screw Automatic | No. 58, Neigh. 9, Dacuo Vil., Zhunan Township, |
|   |                | Joining         | Miaoli County                                  |



### Table of Contents

| Chapter 1 Report Preparation Instructions, Introduction and Company Profile |
|-----------------------------------------------------------------------------|
| Chapter 2 Organization Boundary and Report Boundary Description15           |
| Chapter 3 Base Year Setting and Inventory List Change21                     |
| Chapter 4 GHG Inventory and CO2_e Emissions of Each Category22              |
| Category 1 Direct emissions from stationary combustion                      |
| (natural gas, emergency power generator)22                                  |
| Category 1 Direct emissions from mobile combustion (gasoline diesel)26      |
| Category 1 Direct emissions from industrial processes (acetylene, WD40      |
| anti-rust oil)28                                                            |
| Category 1 Direct fugitive emissions (coolant) of GHG from                  |
| anthropogenic systems30                                                     |
| Category 1 Direct fugitive emissions (septic tank) of GHG from              |
| anthropogenic systems34                                                     |
| Category 1 Laser welding of dissimilar metals36                             |
| Category 1 High pressure gas circuit breakers37                             |
| Category 1 Dry powder fire extinguisher39                                   |
| Category 2 Imported energy (electricity)41                                  |
| GHG CO2_e Emissions of Each Plant Regional Boundary42                       |
| 2023 Sheh Kai Precision GHG Emissions Statistics47                          |
| Chapter 5 GHG Quantification49                                              |
| 5.1 Qualification Method49                                                  |
| 5.2 Emission Factor Selection and Use53                                     |
| 5.3 Quantitative Calculation Method Change Explanation56                    |
| 5.4 Data Uncertainty Management56                                           |
| 5.5 Uncertainty Qualitative Analysis56                                      |
| 5.6 Inventory Data Preservation65                                           |
| Chapter 6 Report Verification66                                             |
| Chapter 7 Report Management67                                               |
| Chapter 8 References68                                                      |

### Chapter 1 2023 GHG Carbon Inventory Report Preparation Instructions and Introduction

Company Name SHEH KAI PRECISION CO., LTD.

#### **Basis**

Informed by the Letter of Taipei Exchange dated March 9, 2022: Jin-Guan-Zheng-Fa-Zi No. 1110381030 Letter of Financial Supervisory Commission, "Sustainable Development Roadmap for TWSE/TPEx Listed Companies" plan content

(I) Information disclosure on greenhouse gas (GHG) inventory and verification completed according to the schedule:

Disclosure content: GHG direct emissions (Scope 1) and energy indirect emissions (Scope 2).

Applicable schedule: TPEx listed companies in steel industry: Complete inventory inspection in 2023, and complete verification in 2024.

- (II) Complete GHG inventory and verification schedule plans for the parent company and group (including subsidiaries) before the end of Q2 of 2022 and before the end of Q1 of 2023. After reporting to the Board of Directors for approval, the implementation progress shall be subsequently reported to the Board of Directors on a quarterly basis, in order to continuously control the GHG inventory and verification disclosure schedule completion status. The aforementioned implementation plan items shall include but not limited to the following focuses:
- > Specify the establishment of full-time (adjunct) unit, evaluate the number of full-time (adjunct) personnel and the scope of their job duties, and establish an internal audit unit.
- > Specify the plan item detailed implementation schedule.
- Establish talent training, strategic goal, control mechanism, internal audit and external verification plans, GHG inventory and report plan content, etc. The inventory inspection procedure shall include the following key focuses:
  - 1. Set up inventory boundary, identify emission source and disclosure scope.
  - 2. Complete emissions inventory inspection.
  - 3. Prepare, distribute the first edition of inventory report and execute document preservation management.
  - 4. Perform verification procedure (including internal and external verification).

- 5. Internal auditors shall track and audit whether relevant operations are completed according to the plan.
- 6. Complete the establishment of relevant information systems.

Sheh Kai Precision Co., Ltd. (hereinafter referred to as "Sheh Kai Precision" or "the Company") is committed to the sustainable development and has actively completed the 2022 GHG inventory report and information disclosure. To cope with the energy-saving and carbon reduction net zero trend in response to the global climate change, this report is prepared in accordance with ISO 14064-1:2018 standards and the project requirements of the Ministry of Environment. The purpose of this report is to provide GHG inventory management related information of the Company. Through the inventory inspection process and result, the GHG emissions of the Company can be properly understood. In addition, the Company further plans to exert greater effort in the reduction of GHG emissions in the future.

#### **Responsibility of Report:**

The preparation of this report is to comply with the requirements of the Greenhouse Gas Reduction and Management Act.

#### **Purpose of Report:**

- (1) To identify the GHG emission source and to investigate the emissions of the Company in order to use it as the basis for internal management to cope with the national and international GHG trend.
- (2) To clearly explain the GHG information of the Company in order to properly understand the GHG emission status, to use it as the basis for the study and discussion of Category 1 and Category 2 GHG reduction, and to use as the inventory basis for the disclosure of the Sustainable Development Roadmap for TPEx Listed Companies announced by the Financial Supervisory Commission (FSC).

### **Expected Purpose and Subject of Report:**

According to Category 1 and Category 2 of the Sustainable Development Roadmap for TPEx Listed Companies announced by FSC, the GHG report of the current year is an internal document of the Company and is mainly provided for the internal GHG management and communication.

#### I. Introduction

The impact of global climate change and greenhouse effect becomes more severe year after year, and disaster also occurs more frequently. In view of the threat of climate change on the environment, human survival and national security becomes greater and more urgent, more than 130 countries

worldwide have declared and responded to the "2050 Net Zero Emissions". How to respond to the impact of the climate change in order to achieve stability and balance of natural system is a major challenge that needs to be faced and actively resolved by all of us.

While facing the treat of climate change, countries around the world have stated their commitments in the net zero emissions by 2050. Nevertheless, the international net zero trade and domestic net zero regulations implemented are expected to cause harsh potential impact on exportoriented industries. With regard to the "European Union Carbon Border Mechanism (CBAM)", the "European Commission's Implementing Regulation" has been officially implemented in October 2023. Accordingly, for products exported to European Union (EU) during Q4 of this year, the first 2023\_Q4 carbon content report must be completed by the end of January of next year, 2024. For the "European Union Carbon Border Adjustment Mechanism (CBAM)" recently implemented, the draft of "U.S. Clean Competition Act (CCA)") currently under stipulation and even the requirements specified by the international manufacturers and business operators, all of these regulations and standards will cause material impact on the competitiveness of products exporting to European and American regions and other countries in the future. The government of our nation announced the "Taiwan 2025 Net Zero Emissions Roadmap" in March 2022, and the "Greenhouse Gas Reduction and Management Act" Amendment Draft also passed the third-reading of the Legislative Yuan on January 10, 2023 and promulgated for implementation on February 15 of the same year with the title of the Act amended to "Climate Change Response Act", which also included the goal of 2050 net zero emissions, improvement of climate governance level, collection of carbon fee for specific purpose of use, additional stipulation of climate change adaption section, inclusion of carbon footprint and product label management mechanism. Accordingly, the Taiwanese government not only demonstrates the determination of our nation heading toward goal of net zero emissions to the external but also establishes a resilient climate legal basis for the internal.

The "Climate Change Response Act" specifies the basic carbon inventory requirements and also emphasizes the carbon pricing mechanism of carbon fee, voluntary reduction and cap control. The carbon fee collection in stages for different period is planned, and the subjects for carbon fee collection can be divided into direct emissions sources and indirect emission sources. The Ministry of Environment plans to collect carbon fees for direct emissions

sources of petrochemical and steel industries, etc. with the carbon emissions exceeding 25 thousand metric tons in 2024. The power generation industry operators are not included in the direct emissions category, and instead, the electricity users' indirect emissions are calculated. For example, although semiconductor industry is not listed under the category of direct production of carbon emissions, it is still classified as the subject for carbon fee collection due to its large amount of electricity consumption. It clearly shows that the era of carbon emissions with a cost has arrived. Sustainability low-carbon transition has become the global trend, and improvement of manufacturing process, improvement of performance, energy saving, carbon reduction and enhancement of international competitiveness are key subjects to enterprises. Accordingly, enterprises must deploy plan and establish solutions early.

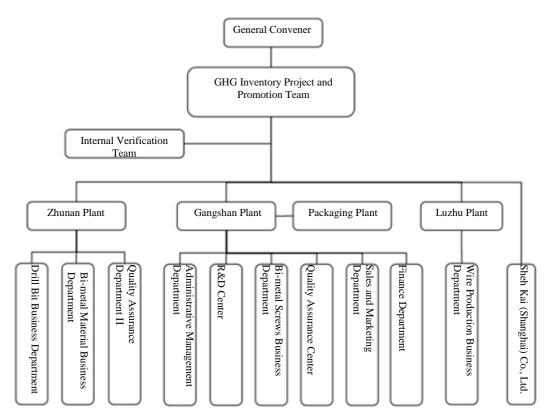
#### **Company Profile:**

Sheh Kai Precision Co., Ltd., established in 1992 and approved by the Financial Supervisory Commission for public listing at Taipei Stock Exchange (TPEx) in 2008, equipped with the European ETA Certification and U.S. ICC Certification for products of screw anchors, is the largest manufacturer for the export of products of stainless steel bi-metal drilling screws and bi-metal screw anchors in Taiwan. The "dissimilar metal joining and partial high-frequency heat treatment" of bi-metal screws, apart from conventional screws, is of relatively higher technical barrier, and its manufacturing process is extremely complicated. All of the key automated machineries necessary for the manufacturing process are self-designed and fabricated by the Company. The Company aims to research and develop manufacturing process technologies and to reduce cost for a long period of time. After extensive years of effectors, the Company has achieved competitive advantages in its stable and exclusive mass production technologies, self-development and manufacturing of machine equipment, product reputation and framework in the specific high-end markets requiring certification. For products demanded by customers, the Company is able to respond promptly and properly, in order to increase the profit margin and to achieve the most optimal profitability for the Company.

### **Policy Statement:**

This report is prepared in accordance with the requirements specified in the "Sustainable Development Roadmap for TWSE/TPEx Listed. Companies" announced by Financial Supervisory Commission - GHG inventory and

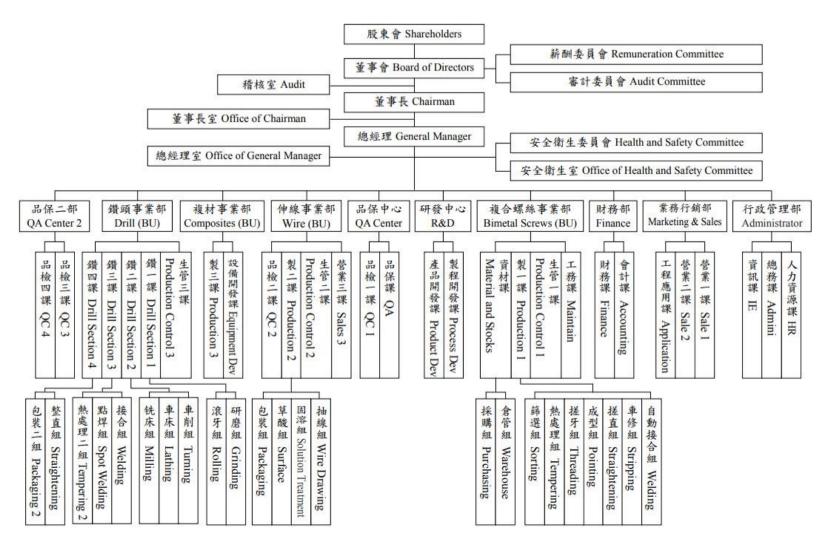
verification information disclosure schedule: For steel and iron industry TPEx listed company first stage of GHG direct emissions (Scope 1) inventory and energy indirect emissions (Scope 2) inventory, the inventory inspection is to be completed in 2023 and the verification thereof is to be completed in 2024.


Based on proper use of resources and fulfillment of corporate social responsibility, and in accordance with the requirements on the GHG control development trend and response to the requirements for future GHG emission reduction specified by ISO 14064-1:2018, Sheh Kai Precision has implemented the plans of systematic GHG emission inventory and list establishment as well as the verification procedure, etc. In addition, the 2022 carbon inventory has also been performed early along with the report of 2023 total carbon emissions of the monthly inventory result during the quarterly meeting, in order to provide a reference for future implementation of effective emission reduction improvement plans. In addition, the Company aims to achieve sustainable energy development along with the consideration of resource efficiency, energy saving and environmental protection at the same time, in order to exert effort in the achievement of low-carbon economic society for the industry jointly.

#### **Policy Implementation Goal:**

- ➤ Carbon Inventory Base year: The present GHG inventory is performed in accordance with the latest version of (14064-1: 2018), and verification is completed in 2024 in accordance with the requirements of the FSC; therefore, the year of 2023 is set as the GHG inventory base year.
- ➤ Commitment in GHG inventory of the factory in order to properly understand the GHG emission status.
- ➤ Propose emission reduction feasible plan according to the GHG inventory data and execute the plan properly in order to implement energy saving and carbon reduction measures properly.
- ➤ Enhance the Company's currently existing green power generation scale (solar power generation).
- ➤ Encourage all employees to comply with environmental protection laws and to participate in carbon reduction nativities.
- > Set up energy saving and carbon reduction goals, and actively reduce emissions through process optimization and environmental management.
- ➤ Assist and request suppliers/contractors to perform GHG inventory, and to provide data and cooperate with other relevant requirements.

  GHG Inventory Handling Unit [R&D Center]


Reviewed by Senior Vice President:



**GHG Inventory Promotion Organizational Structure** 

"R&D Center" is the handling unit for the GHG inventory. The report boundary setting is defined in accordance with the organization, geographic, emission and operating boundaries of the organizational structure of the Company in order to establish various relevant reports and forms, following which each department head then designates the executing personnel to collect and sort the information (filling out forms), and the R&D Center then performs the summarization of the information for subsequent years according to the GHG inventory and verification schedule to plan the continuous improvement operation annually.

- Summarize GHG total monthly emissions
- Quantify data
- Calculate GHG emission equivalent
- Report to the Board of Directors quarterly
- Establish annual inventory emission inventory list
- Prepare inventory report
- Distribute report and document preservation management
- Verification procedure (internal verification), (external verification)



Sheh Kai Precision Company Organizational Chart

## **2023 GHG Inventory Product Manufacturing Operation Flow Chart**

| <b>Operation Process</b> | Process Description                                                                                                                   |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Wire rod                 | Manufacture metal materials of the carbon steel and stainless steel of fasteners                                                      |
| Wire drawing             | Perform acid pickling, wire drawing and heat treatment (spheroidzation) on the wire rod for skinpass to obtain desired wire diameter. |
| Heading                  | Perform pre-pressing on the wire to form desired head shape.                                                                          |
| Trimming                 | Trim and flatten the joint parts of composite fasteners.                                                                              |
| Straightening            | Straighten deformation and bending of long fasteners due to manufacturing process.                                                    |
| Forming                  | Stamping on screw tails.                                                                                                              |
| Threading                | Thread formation of fasteners.                                                                                                        |
| Heat treatment           | Heating and cooling treatments on the fasteners according to the needs, in order to obtain the desired mechanical property.           |
| Surface<br>treatment     | Electroplating and galvanization on exterior of screws to improve anti-rust capability and appearance.                                |
| Packaging                | Perform packaging and label attachment according to the quantity instructed by client.                                                |
| Shipping                 | Shipping of products to client end.                                                                                                   |

## Chapter 2 Organization and Report Boundary Description **2.1 Organization Boundary Description**

| Inventory Voor | Basic Information            |
|----------------|------------------------------|
| Inventory Year | Company Plant Name           |
| 2023           | Sheh Kai Precision Co., Ltd. |

| Plant                        | Address                                    |
|------------------------------|--------------------------------------------|
| Sheh Kai Precision Co., Ltd. | No. 1, 3, 5, Bengong 1st Rd., Gangshan     |
| Gangshan Plant               | Dist., Kaohsiung City                      |
| Sheh Kai Precision Co., Ltd. | No. 161, Minyou Rd., Luzhu Dist.,          |
| Luzhu Plant                  | Kaohsiung City                             |
| Sheh Kai Precision Co., Ltd. | No. 1, Bengong W. 1st Rd., Gangshan Dist., |
| Packaging Plant              | Kaohsiung City                             |
| Sheh Kai Precision Co., Ltd. | No. 70-29, Shishan, Neigh. 23, Dacuo Vil., |
| Bi-Metal Material Plant      | Zhunan Township, Miaoli County             |
| Sheh Kai Precision Co., Ltd. | No. 58, Neigh. 9, Dacuo Vil., Zhunan       |
| Zhunan Plant                 | Township, Miaoli County                    |

|--|

#### 2.2 Report Boundary Description

For the present inventory, the GHG category can be classified into the following GHG groups of carbon dioxide ( $CO_2$ ), methane ( $CH_4$ ), nitrous oxide( $N_2O$ ), nitrogen trifluoride( $NF_3$ ), sulfur Hexafluoride( $SF_6$ )and other appropriate GHG groups, hydrofluorocarbons (HFCs), perfluorinated chemicals (PFCs), etc.

This report is prepared in accordance with the requirements specified in the "Sustainable Development Roadmap for TWSE/TPEx Listed. Companies" announced by the FSC. The report boundary includes the direct GHG emissions (Category 1) and indirect GHG emissions from imported energy (Category 2). The GHG emission source type and item are as shown in Table 1, and the emission source identification chart is as shown in Table 2.

Table 1 Sheh Kai Precision's 2023 GHG Emission Source Type and Item

| Category               | Item                                                        | Activity/Equipment<br>Type                                             | Emission<br>Source | GHG                                                     | Emission Source<br>Location                                                                     |
|------------------------|-------------------------------------------------------------|------------------------------------------------------------------------|--------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                        | Direct emissions                                            | Heating furnace                                                        | Natural gas        | CO <sub>2</sub> , CH <sub>4</sub> ,<br>N <sub>2</sub> O | Gangshan Plant, Luzhu<br>Plant                                                                  |
|                        | from stationary<br>combustion<br>source                     | Emergency power generator                                              | Diesel             | CO <sub>2</sub> , CH <sub>4</sub> ,<br>N <sub>2</sub> O | Gangshan Plant, Luzhu<br>Plant, Bi-Metal<br>Material Plant                                      |
|                        |                                                             | Company vehicles                                                       | Gasoline           | CO <sub>2</sub> , CH <sub>4</sub> ,<br>N <sub>2</sub> O | Gangshan Plant, Bi-<br>Metal Material Plant                                                     |
|                        | Direct emissions from mobile                                | Company vehicles                                                       | Diesel             | CO <sub>2</sub> , CH <sub>4</sub> ,<br>N <sub>2</sub> O | Gangshan Plant                                                                                  |
|                        | combustion<br>source                                        | Fork lift trucks                                                       | Diesel             | CO <sub>2</sub> , CH <sub>4</sub> ,<br>N <sub>2</sub> O | Gangshan Plant, Luzhu<br>Plant<br>Packaging Plant,<br>Zhunan Plant                              |
|                        | Direct emissions from manufacturing processes or facilities | Wires for electric welding operation                                   | Welding materials  | CO <sub>2</sub>                                         | Bi-Metal Material Plant                                                                         |
| Category 1: Direct GHG |                                                             | Acetylene                                                              | CO <sub>2</sub>    | $CO_2$                                                  | Gangshan Plant, Luzhu<br>Plant                                                                  |
| emissions              |                                                             | WD40 anti-rust oil                                                     | CO <sub>2</sub>    | $CO_2$                                                  | Gangshan Plant, Luzhu<br>Plant                                                                  |
|                        |                                                             | Ammonia cracker                                                        | Note 2             | Note 2                                                  | Luzhu Plant                                                                                     |
|                        | Direct fugitive emissions of                                | Septic tanks                                                           | CH <sub>4</sub>    | $\mathrm{CH_{4}}$                                       | Gangshan Plant, Luzhu<br>Plant, Packaging<br>Plant, Bi-Metal<br>Material Plant, Zhunan<br>Plant |
|                        | GHG from                                                    | Air<br>conditioners/refrigera<br>tors/chiller<br>units/vehicle coolant | HFCs               | HFCs                                                    | Gangshan Plant, Luzhu<br>Plant, Packaging<br>Plant, Bi-Metal<br>Material Plant, Zhunan<br>Plant |
|                        |                                                             | Gas circuit breakers (GCB)                                             | SF <sub>6</sub>    | SF <sub>6</sub>                                         | Gangshan Plant, Luzhu<br>Plant                                                                  |

| Category 2:     | Indirect       |                        |             |        | Gangshan Plan  | nt, Luzhu |
|-----------------|----------------|------------------------|-------------|--------|----------------|-----------|
| Indirect GHG    | emissions from | n Electricity supplied | Electricity | CO     | Plant, Packagi | ng Plant, |
| emissions from  | imported       | by Taipower            | Electricity | $CO_2$ | Bi-Metal       | Material  |
| imported energy | electricity    |                        |             |        | Plant, Zhunan  | Plant     |

#### 2.2.1 Exclusions for GHG Emissions Inventory

- 1. For Category 2, except for the externally purchased Taipower's electricity, the externally purchased energies of thermal energies and steam are excluded. In addition, since the Company does not use biomass energy, it is also excluded.
- 2. The process of ammonia cracker refers to the reaction of ammonia and nitrogen, and there is no reaction with the oxygen during the process; therefore, the GHG of  $N_2O$  is not generated.
- 3. Since R-22 and R-12 coolants are controlled substances specified in the Montreal Protocol, rather than GHG controlled substances, they are excluded.
- 4. Since R-600a coolant has no GWP value, it is excluded.
- 5. Since activity data collection of the tail gas combustion of Gangshan Plant is difficult, it is excluded.
- 6. The fire extinguishers have been verified to be ABC type of fire extinguishers such that they do not generate GHG directly; therefore, they are excluded.

Table 2 Sheh Kai Precision's 2023 GHG Emission Source Identification Chart

|     | Location                                   | Raw Fuel/Material or<br>Product    | Emission   | Source Data                      |                 | Туре | of GH            | G Possib | ly Gener | ated            |                 |
|-----|--------------------------------------------|------------------------------------|------------|----------------------------------|-----------------|------|------------------|----------|----------|-----------------|-----------------|
| No. | Name                                       | Name                               | Category   | Emission<br>Type                 | CO <sub>2</sub> | СН4  | N <sub>2</sub> O | HFCS     | PFCS     | SF <sub>6</sub> | NF <sub>3</sub> |
| 1   | Gangshan Plant                             | Company vehicles (gasoline)        | Category 1 | Mobile (T)                       | v               | v    | v                |          |          |                 |                 |
| 2   | 2 Gangshan Plant Company vehicles (diesel) |                                    | Category 1 | Mobile (T)                       | v               | v    | V                |          |          |                 |                 |
| 3   | Gangshan Plant                             | Fork lift truck (super diesel)     | Category 1 | Mobile (T)                       | V               | v    | v                |          |          |                 |                 |
| 4   | Gangshan Plant                             | (escape)                           | Category 1 | Fugitive (F)                     |                 | v    |                  |          |          |                 |                 |
| 5   | Gangshan Plant                             | Non-employees (septic tank escape) | Category 1 | Fugitive (F)                     |                 | v    |                  |          |          |                 |                 |
| 6   | Gangshan Plant                             | Coolant (R-134a)                   | Category 1 | Fugitive (F)                     |                 |      |                  | v        |          |                 |                 |
|     |                                            | Coolant (R-407C)                   | Category 1 | Fugitive (F)                     |                 |      |                  | v        |          |                 |                 |
|     |                                            | Coolant (R-410A)                   | Category 1 | Fugitive (F)                     |                 |      |                  | v        |          |                 |                 |
| 9   | Gangshan Plant                             | Natural Gas                        | Category 1 | Stationary (E)                   | v               | v    | V                |          |          |                 |                 |
|     | Gangshan Plant                             |                                    | Category 1 | Stationary (E)                   | v               | v    | v                |          |          |                 |                 |
|     |                                            | Gas circuit breakers/GCB           | Category 1 | Fugitive (F)                     |                 |      |                  |          |          | v               |                 |
|     | Gangshan Plant                             |                                    | Category 1 | Process (P)                      | v               |      |                  |          |          |                 |                 |
| 13  | Gangshan Plant                             | WD-40 anti-rust oil                | Category 1 | Process (P)                      | v               |      |                  |          |          |                 |                 |
| 14  | Gangshan Plant                             | Externally purchased electricity   | Category 2 | Externally purchased electricity | v               |      |                  |          |          |                 |                 |
| 15  | Luzhu Plant                                | Fork lift truck (super diesel)     | Category 1 | Mobile (T)                       | v               | v    | v                |          |          |                 |                 |
| 16  | Luzhu Plant                                | Employees (septic tank escape)     | Category 1 | Fugitive (F)                     |                 | v    |                  |          |          |                 |                 |
| 17  | Luzhu Plant                                | Non-employees (septic tank escape) | Category 1 | Fugitive (F)                     |                 | v    |                  |          |          |                 |                 |
|     |                                            | Coolant (R-134a)                   | Category 1 | Fugitive (F)                     |                 |      |                  | v        |          |                 |                 |
|     | Luzhu Plant                                | Coolant (R-410A)                   | Category 1 | Fugitive (F)                     |                 |      |                  | v        |          |                 |                 |
| 20  |                                            | Natural Gas                        | Category 1 | Stationary (E)                   | V               | v    | V                |          |          |                 |                 |
|     | Luznu Plant                                | Emergency power generator (diesel) | Category 1 | Stationary (E)                   | V               | v    | V                |          |          |                 |                 |
|     | Luzhu Plant                                | Gas circuit breakers/GCB           | Category 1 | Fugitive (F)                     |                 |      |                  |          |          | V               |                 |
|     |                                            | Acetylene                          | Category 1 | Process (P)                      | V               |      |                  |          |          |                 |                 |
| 24  | Luzhu Plant                                | WD-40 anti-rust oil                | Category 1 | Process (P)                      | v               | v    | V                |          |          |                 |                 |
| 25  |                                            | Externally purchased electricity   | Category 2 | Externally purchased electricity | V               |      |                  |          |          |                 |                 |
| 26  | Packaging<br>Plant                         | Fork lift truck (super diesel)     | Category 1 | Mobile (T)                       | v               | v    | v                |          |          |                 |                 |
| 27  | Packaging<br>Plant                         | Employees (septic tank escape)     | Category 1 | Fugitive (F)                     |                 | v    |                  |          |          |                 |                 |
| 28  | Packaging<br>Plant                         | Non-employees (septic tank escape) | Category 1 | Fugitive (F)                     |                 | v    |                  |          |          |                 |                 |
|     | Packaging<br>Plant                         | Coolant (R-134a)                   | Category 1 | Fugitive (F)                     |                 |      |                  | v        |          |                 |                 |
| 30  | Packaging<br>Plant                         | Coolant (R-410A)                   | Category 1 | Fugitive (F)                     |                 |      |                  | v        |          |                 |                 |
| 31  | Packaging<br>Plant                         | Externally purchased electricity   | Category 2 | Externally purchased electricity | V               |      |                  |          |          |                 |                 |
| 32  | Bi-Metal<br>Material Plant                 | Company vehicles (gasoline)        | Category 1 | Mobile (T)                       | v               | v    | v                |          |          |                 |                 |
| 33  | Bi-Metal<br>Material Plant                 | Employees (septic tank escape)     | Category 1 | Fugitive (F)                     |                 | v    |                  |          |          |                 |                 |
| 34  |                                            | Non-employees (septic tank escape) | Category 1 | Fugitive (F)                     |                 | v    |                  |          |          |                 |                 |
| 35  | Bi-Metal                                   | Coolant (R-134a)                   | Category 1 | Fugitive (F)                     |                 |      |                  | v        |          |                 |                 |

|    | Material Plant             |                                      |            |                                  |   |   |   |   |  |  |
|----|----------------------------|--------------------------------------|------------|----------------------------------|---|---|---|---|--|--|
|    | Bi-Metal<br>Material Plant | Coolant (R-410A)                     | Category 1 | Fugitive (F)                     |   |   |   | v |  |  |
|    | Bi-Metal<br>Material Plant | Emergency power generator (diesel)   | Category I | Stationary (E)                   | v | v | V |   |  |  |
| 38 | Bi-Metal<br>Material Plant | Wires for electric welding operation | Category 1 | Process (P)                      | V |   |   |   |  |  |
| 39 | Bi-Metal<br>Material Plant | Externally purchased electricity     | Category 2 | Externally purchased electricity | V |   |   |   |  |  |
| 40 | Zhunan Plant               | Fork lift truck (super diesel)       | Category 1 | Mobile (T)                       | v | v | v |   |  |  |
| 41 | Zhunan Plant               | Employees (septic tank escape)       | Category 1 | Fugitive (F)                     |   | v |   |   |  |  |
| 42 | Zhunan Plant               | Coolant (R-134a)                     | Category 1 | Fugitive (F)                     |   |   |   | v |  |  |
| 43 | Zhunan Plant               | Coolant (R-410A)                     | Category 1 | Fugitive (F)                     |   |   |   | v |  |  |
| 44 | Zhunan Plant               | Externally purchased electricity     | Category 2 | Externally purchased electricity | v |   |   |   |  |  |

### **Chapter 3 Base Year Setting and Inventory List Change**

#### 3.1 Base Year

| Base Year Setting | 2023 |
|-------------------|------|
|-------------------|------|

The Company sets the year of 2023 as the base year for the GHG inventory, and the reason is explained in the following:

Since the Company officially performed the GHG inventory for the first time in 2023 and also established a systematic system with quantified data to ensure the credibility of the inventory data, the year of 2023 was set as the inventory base year.

In the future, the base year setting and revision will be made according to the Company's needs and relevant national policies

#### 3.2 Change of Base Year

In case of the following situations, the base year set by the Company may be updated and re-calculated according to the new situation, and documentation is to be implemented:

- 1. Structural change (merger, acquisition, investment and disinvestment) in the organization boundary or report boundary.
- 2. GHG emission source or relevant ownership and control right moving in or out of the organization boundary.
- 3. Change in the quantification method, resulting in significant change of the GHG emissions or removals amount; discovery of major error, or accumulated error exceeding the significance threshold by 3% (significance threshold of GHG inventory operation is set to be 3.0%).
- 4. Change in the facility production level, including facility shutdown or activation, and the organization shall not consider the re-calculation of its base year and GHG inventory list.

## Chapter 4 GHG Inventory and CO<sub>2</sub>\_e Emissions of Each Category

**Category 1 Direct emissions from stationary combustion (natural gas)** 

| (1) 2023 Monthly natural gas consumption (*cross-month consumption) |                |             |  |  |  |  |
|---------------------------------------------------------------------|----------------|-------------|--|--|--|--|
| Consumption amount (m3) Month                                       | Gangshan Plant | Luzhu Plant |  |  |  |  |
| 1                                                                   | 580.6452*      | 3320.9678*  |  |  |  |  |
| 2                                                                   | 826.0000       | 7877.0000   |  |  |  |  |
| 3                                                                   | 939.0000       | 15402.0000  |  |  |  |  |
| 4                                                                   | 791.0000       | 8569.0000   |  |  |  |  |
| 5                                                                   | 753.0000       | 9921.0000   |  |  |  |  |
| 6                                                                   | 885.0000       | 7705.0000   |  |  |  |  |
| 7                                                                   | 935.0000       | 5450.0000   |  |  |  |  |
| 8                                                                   | 940.0000       | 5058.0000   |  |  |  |  |
| 9                                                                   | 808.0000       | 5067.0000   |  |  |  |  |
| 10                                                                  | 627.0000       | 4200.0000   |  |  |  |  |
| 11                                                                  | 828.0000       | 6451.0000   |  |  |  |  |
| 12                                                                  | 924.0000*      | 7651.6429*  |  |  |  |  |
| Subtotal (m <sup>3</sup> )                                          | 9836.6452      | 86672.6107  |  |  |  |  |

| (2) GHG emissions factor and GWP value               |              |              |              |  |  |  |
|------------------------------------------------------|--------------|--------------|--------------|--|--|--|
| GHG CO <sub>2</sub> CH <sub>4</sub> N <sub>2</sub> O |              |              |              |  |  |  |
| Emission factor (kg/m <sup>3</sup> )                 | 1.8790358400 | 0.0000334944 | 0.0000033494 |  |  |  |
| GWP value                                            | 1            | 27.9         | 273          |  |  |  |

| (3) Emissions equivalent = Annual consumption amount x [ CO <sub>2</sub> emission factor + CH <sub>4</sub> emission factor x CH <sub>4</sub> GWP + N <sub>2</sub> O emission factor x N <sub>2</sub> O GWP ] |                  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| Plant site emission Gangshan Plant (natural gas)  Source_emissions amount gas)  Luzhu Plant (natural gas)                                                                                                    |                  |  |  |  |
| Emissions equivalent (ton_CO <sub>2</sub> -e)                                                                                                                                                                | 18.5016 163.0212 |  |  |  |
| Total (ton_CO <sub>2</sub> -e)                                                                                                                                                                               | 181.5228         |  |  |  |

Note: Packaging Plant, Zhunan Plant and Bi-Metal Material Plant do not use natural gas. Gangshan Plant uses natural gas for the drawing furnace waste gas burning, and after the burning of the waste gas, the additional small amount of carbon emissions cannot be detected easily for calculation; therefore, it is excluded from the calculation.

### 2023 Direct emissions from stationary combustion (natural gas)

### **Total emissions equivalent 181.5228**

### ton\_CO2-e

## Category 1 Direct emissions from stationary combustion of power generators (diesel)

2023 Diesel consumption of emergency power generators of each plant site (Unit: L)

| (Omt. L)                      |     |                                         |                            |                           |
|-------------------------------|-----|-----------------------------------------|----------------------------|---------------------------|
| Plant site                    | KW  | Test run oil consumption per minute (L) | Hotal annual test run time | Total oil consumption (L) |
| Gangshan<br>Plant (1)         | 60  | 0.2500                                  | 30                         | 7.5000                    |
| Gangshan<br>Plant (2)         | 114 | 0.4167                                  | 30                         | 12.5010                   |
| Luzhu Plant                   | 30  | 0.1250                                  | 30                         | 3.7500                    |
| Packaging<br>Plant            | 0   | 0                                       | 0                          | 0.0000                    |
| Bi-Metal<br>Material<br>Plant | 50  | 0.2083                                  | 30                         | 6.2500                    |
| Zhunan Plant                  | 0   | 0.0000                                  | 0                          | 0.0000                    |

Note 1: The diesel consumption of the fork lift trucks of Gangshan Plant and Luzhu Plant refers to the total diesel consumption minus the diesel consumption of power generators.

Note 2: Bi-Metal Material Plant has no fork lift truck, and the emergency power generator diesel is supplied by the fire inspection company.

Note 3: For each trial run, the power generator is turned on for five minutes, and numerous startups are performed according to the inspection items. The average annual trial run time is half an hour.

| GHG emissions factor and GWP value |              |                 |                  |  |  |
|------------------------------------|--------------|-----------------|------------------|--|--|
| GHG                                | $CO_2$       | CH <sub>4</sub> | N <sub>2</sub> O |  |  |
| Emergency power generator diesel   | 2.6060317920 | 0.0001055074    | 0.0000211015     |  |  |
| GWP value                          | 1            | 27.9            | 273              |  |  |

| _                                           | Emissions equivalent = Annual consumption amount x [ $CO_2$ emission factor + $CH_2$ emission factor x $CH_4$ $GWP + N_2O$ emission factor x $N2O$ $GWP$ ] (Unit: ton_ $CO_2$ -e) |                                       |                 |  |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|--|--|--|
| Dlant sita amission                         | Gangsh                                                                                                                                                                            | an Plant                              | Packaging Plant |  |  |  |
| Plant site emission source (L)              | Emergency power (20.0)                                                                                                                                                            | Emergency power generator diesel (0L) |                 |  |  |  |
| Emissions equivalent ton_CO <sub>2</sub> -e | 0.0                                                                                                                                                                               | 0                                     |                 |  |  |  |
| Plant site emission                         | Luzhu Plant                                                                                                                                                                       | Bi-Metal Material                     | Zhunan Plant    |  |  |  |

| source                 | (3.7500L)                       | Plant            | (0L)             |  |
|------------------------|---------------------------------|------------------|------------------|--|
| (L)                    |                                 | (6.2500L)        |                  |  |
|                        | Emergency power                 | Emergency power  | Emergency power  |  |
|                        | generator diesel                | generator diesel | generator diesel |  |
| Emissions equivalent   | 0.0098                          | 0.0163           | 0                |  |
| ton_CO <sub>2</sub> -e | 0.0098                          | 0.0103           | U                |  |
| Total                  | 0.0784 (ton_CO <sub>2</sub> -e) |                  |                  |  |

2023 Direct emissions from stationary combustion of diesel of emergency power generators
Total emissions equivalent 0.0784 ton\_CO<sub>2</sub>-e

### Category 1 Direct emissions from mobile combustion (gasoline, diesel)

| 2023 Consumption amount of each plant site (Unit: L) |                            |                        |                 |  |  |
|------------------------------------------------------|----------------------------|------------------------|-----------------|--|--|
|                                                      | Gangshan Plant             |                        | Packaging Plant |  |  |
| Vahiala gasalina                                     | Vehicle diesel             | Fork lift truck        | Fork lift truck |  |  |
| Vehicle gasoline                                     | venicie diesei             | diesel                 | diesel          |  |  |
| 11572.4320                                           | 4594.3300                  | 3179.9990              | 3200.0000       |  |  |
| Luzhu Plant                                          | Bi-Metal Material<br>Plant | Zhunan Plant           | -               |  |  |
| Fork lift truck diesel                               | Vehicle gasoline           | Fork lift truck diesel | -               |  |  |
| 5921.2500                                            | 4338.1120                  | 49.8900                | -               |  |  |

Note 1: Since the vehicle gasoline and diesel of Luzhu Plant are paid and supplied by Gangshan Plant, the vehicle gasoline and diesel consumption of Luzhu Plant is calculated towards the consumption of Gangshan Plant.

Note 2: The diesel consumption of the fork lift trucks of Gangshan Plant and Luzhu Plant refers to the total diesel consumption minus the diesel consumption of power generators.

| GHG emis                                                                           | GHG emissions factor and GWP value |              |              |              |  |  |  |
|------------------------------------------------------------------------------------|------------------------------------|--------------|--------------|--------------|--|--|--|
| GHG CO <sub>2</sub> CH <sub>4</sub> N                                              |                                    |              |              |              |  |  |  |
| Emission                                                                           | Vehicle gasoline                   | 2.2631328720 | 0.0008164260 | 0.0002612563 |  |  |  |
| factor (kg/L) Vehicle/fork lift truck diesel 2.6060317920 0.0001371596 0.000137159 |                                    |              |              |              |  |  |  |
| (                                                                                  | GWP value                          | 1            | 27.9         | 273          |  |  |  |

| Emissions equivalent = Annual consumption amount x [ $CO_2$ emission factor + $CH_4$ emission factor x $CH_4$ GWP + $N_2O$ emission factor x $N_2O$ GWP ] (Unit: ton_ $CO_2$ -e) |                  |                             |                |                |                        |             |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------|----------------|----------------|------------------------|-------------|-------------|
| Plant site                                                                                                                                                                       |                  | Gangsha                     |                |                |                        |             | ing Plant   |
| emission source                                                                                                                                                                  | Vehicle gasoline | Vehicle                     | diesel         | Fork lift dies |                        | Fork lift t | ruck diesel |
| Emissions equivalent                                                                                                                                                             | 27.2790          | 12.1                        | 12.1626 8.4184 |                | 84                     | 8.4714      |             |
| Subtotal                                                                                                                                                                         |                  | 47.8600                     |                |                | 8.4                    | 714         |             |
| Plant site                                                                                                                                                                       | Luzhu Pl         | ant Bi-Metal Material Plant |                | Zh             | unan Plant             | -           |             |
| emission<br>source                                                                                                                                                               | Fork lift trucl  | Vehicle gasoline            |                |                | Fork lift truck diesel |             | -           |
| Emissions equivalent                                                                                                                                                             | 15.675           | 4                           | 10.            | 0.2260         |                        | 0.1321      | -           |
| Subtotal                                                                                                                                                                         | 15.675           | 4                           | 10.            | 2260           |                        | 0.1321      | -           |

**Total** 

82.3648(ton\_CO<sub>2</sub>-e)

2023 Direct emissions from mobile combustion,
Including gasoline and diesel consumed by vehicles and
fork lift truck diesel

Total emissions equivalent 82.3648 ton\_CO<sub>2</sub>-e

### Category 1 Direct emissions from industrial processes (acetylene, WD40 anti-rust oil)

| (1) 2023 Annual consumption amount |           |                    |               |                    |  |  |
|------------------------------------|-----------|--------------------|---------------|--------------------|--|--|
| Dlant site amission                | G         | angshan Plant      | Luzhu Plant   |                    |  |  |
| Plant site emission source         | Acetylene | WD40 anti-rust oil | Acetylen<br>e | WD40 anti-rust oil |  |  |
| Consumption amount (kg)            | 27.5      | 1.3416             | 10.0          | 0.2303             |  |  |

Acetylene cylinder specification (35L), acetylene filling of 2.5kg, Gangshan Plant consumption of 11 cylinders, and Luzhu Plant consumption of 4 cylinders.

WD40 anti-rust oil is calculated based on the mass balance approach, and the equation is:

WD40 consumption amount  $\times$  0.81 (WD40 specific weight)  $\times$  3% (carbon content) = ??(kg).

Gangshan Plant's WD40 consumption amount 55.208L:55.208×0.81×3%=1.3416kg Luzhu Plant's WD40 consumption amount 9.476L:9.476×0.81×3%=0.2303kg

| (2) Emission factor     |              |                    |  |  |  |
|-------------------------|--------------|--------------------|--|--|--|
| Emission Source         | Acetylene    | WD40 anti-rust oil |  |  |  |
| Emission factor (kg/kg) | 3.3846153846 | 1.0000000000       |  |  |  |

| (3) Emissions equivalent = Annual consumption amount x Emission factor |           |                    |             |                    |  |  |  |  |
|------------------------------------------------------------------------|-----------|--------------------|-------------|--------------------|--|--|--|--|
| Plant site emission source                                             | Ga        | angshan Plant      | Luzhu Plant |                    |  |  |  |  |
| <b>Emission Source</b>                                                 | Acetylene | WD40 anti-rust oil | Acetylene   | WD40 anti-rust oil |  |  |  |  |
| Emissions equivalent (ton_CO <sub>2</sub> -e)                          | 0.0931    | 0.0013             | 0.0338      | 0.0002             |  |  |  |  |
| Subtotal (ton_CO <sub>2</sub> -e)                                      |           | 0.0944             | 0.0340      |                    |  |  |  |  |
| Total (ton_CO <sub>2</sub> -e)                                         |           | 0.1                | 284         |                    |  |  |  |  |

Note: Packaging Plant, Zhunan Plant and Bi-Metal Material Plant do not use acetylene and WD40 anti-rust oil.

# 2023 Direct emissions from industrial processes, including acetylene, WD40 anti-rust oil

# Total emissions equivalent 0.1284 ton\_CO<sub>2</sub>-e

# GHG emissions carbon equivalent inventory Category 1 - Coolants (2023)

| Plant site                             |                                 | Gangshan Plant   |                  |               |            |  |  |  |
|----------------------------------------|---------------------------------|------------------|------------------|---------------|------------|--|--|--|
| Equipment                              | Refrigerators, water dispensers | Company vehicles | Air conditioners | Chiller units | Dryers     |  |  |  |
| Coolant type                           | R-134a/HFC-134a                 | R-134a           | R-410a           | R-410a        | R-407C     |  |  |  |
| Equipment quantity (units)             | 29(#1)                          | 10+2(#1)         | 3+4(#2)          | 2             | 3          |  |  |  |
| Total filling amount (g)               | 2212.0000                       | 8090.1644        | 5515.0137        | 36000.0000    | 12500.0000 |  |  |  |
| Fugitive emissions rate (%)            | 0.3                             | 20               | 3                | 8.5           | 16         |  |  |  |
| GWP                                    | 1530                            | 1530             | 2256             | 2256          | 1908       |  |  |  |
| Carbon emissions equivalent (kg_CO2-e) | 10.1531                         | 2475.5903        | 373.2561         | 6903.3600     | 3816.0000  |  |  |  |
| Subtotal (kg_CO2-e)                    |                                 | 13578.3595       |                  |               |            |  |  |  |

| Plant site                                          | Luzhu                           | Plant            | Packaging Plant                 |                  |  |
|-----------------------------------------------------|---------------------------------|------------------|---------------------------------|------------------|--|
| Equipment                                           | Refrigerators, water dispensers | Air conditioners | Refrigerators, water dispensers | Air conditioners |  |
| Coolant type                                        | R-134a                          | R-410a           | R-134a                          | R-410a           |  |
| Equipment quantity (units)                          | 5                               | 13               | 3                               | 6                |  |
| Total filling amount (g)                            | 512                             | 28920            | 235                             | 7490             |  |
| Fugitive emissions rate (%)                         | 0.3                             | 3                | 0.3                             | 3                |  |
| GWP                                                 | 1530                            | 2256             | 1530                            | 2256             |  |
| Carbon emissions equivalent (kg_CO <sub>2</sub> -e) | 2.3501                          | 1957.3056        | 1.0787                          | 506.9232         |  |
| Subtotal (kg_CO <sub>2</sub> -e)                    | 1959.                           | 6557             | 508.0019                        |                  |  |

| Plant site             |                                       | Bi-Metal M       | Bi-Metal Material Plant |               |                                        | Zhunan Plant        |  |
|------------------------|---------------------------------------|------------------|-------------------------|---------------|----------------------------------------|---------------------|--|
| Equipment              | Refrigerators,<br>water<br>dispensers | Company vehicles | Air conditioners        | Chiller units | Refrigerator<br>s, water<br>dispensers | Air<br>conditioners |  |
| Coolant type           | R-134aHFC-<br>134a                    | R-134a           | R-410a                  | R-410a        | R-<br>134aHFC-<br>134a                 | R-410a              |  |
| Total quantity (units) | 5                                     | 3(#3)            | 6                       | 4+1(#4)       | 2                                      | 2                   |  |

| Total filling amount (g)                                  | 260.0000 | 1289.8356 | 20450.0000 | 36108.6301 | 330.0000 | 4200.0000 |
|-----------------------------------------------------------|----------|-----------|------------|------------|----------|-----------|
| Fugitive emissions rate (%)                               | 0.3      | 20        | 3          | 8.5        | 0.3      | 3         |
| GWP                                                       | 1530     | 1530      | 2256       | 2256       | 1530     | 2256      |
| Carbon emissions<br>equivalent<br>(kg_CO <sub>2</sub> -e) | 1.1934   | 394.6897  | 1384.0560  | 6924.1909  | 1.5147   | 284.2560  |
| Subtotal (kg_CO <sub>2</sub> -e)                          |          | 8704      | .1300      |            | 285.     | 7707      |

#### Remarks:

- #1: Gangshan Plant changed vehicles in October 2023, and RCR-7916 was changed to RDV-0565. The fugitive emissions is calculated according to the corresponding vehicle model and time. For the two company vehicles of Luzhu Plant, since the vehicle gasoline is paid by Gangshan Plant, relevant coolant fugitive emissions is calculated towards the emissions of Gangshan Plant.
- #2: Gangshan Plant newly installed four split-type air conditioners in November 2023. The fugitive emissions is calculated according to the plant entrance time of the air conditioners.
- #3: Bi-Metal Material Plant changed vehicles in October 2023, and RAS-9239 was changed to RDP-5697. The fugitive emissions is calculated according to the corresponding vehicle model and time.
- #4: Bi-Metal Material Plant newly installed a laser welder cooling-water machine in November 2023. The fugitive emissions is calculated according to the plant entrance time of the machine.

| Plant site                                                    | Gangsha          | an Plant      | Bi-Metal M | aterial Plant | Z                | hunan Plant |                  |
|---------------------------------------------------------------|------------------|---------------|------------|---------------|------------------|-------------|------------------|
| Equipment                                                     | Air conditioners | Chiller units | Dryers     | Chiller units | Air conditioners | Dryers      | Water dispensers |
| Coolant type                                                  |                  |               | R-         | 22            |                  |             | R-12             |
| Total quantity (units)                                        | 8                | 5             | 2          | 1             | 4                | 2           | 1                |
| Total filling amount (kg)                                     | 59.9500          | 36.0000       | 6.2000     | 4.2000        | 20.0500          | 4.9000      | 0.3000           |
| Fugitive emissions rate (%)                                   | 5.5              | 8.5           | 5.5        | 8.5           | 5.5              | 5.5         | 0.3              |
| GWP                                                           |                  |               | 19         | 60            |                  |             | 11200            |
| Carbon<br>emissions<br>equivalent<br>(kg_CO <sub>2</sub> -e)  | 6462.61          | 5997.60       | 668.36     | 699.72        | 2161.39          | 528.22      | 10.08            |
| Carbon<br>emissions<br>equivalent<br>(ton_CO <sub>2</sub> -e) | 6.4626           | 5.9976        | 0.6684     | 0.6997        | 2.1614           | 0.5282      | 0.0101           |

Note: Air conditioners and equipment use R22 and R12 coolants. Since such types of coolants refer to substances under the control of the Montreal Protocol rather than substances for GHG emissions control, they are listed in the inventory inspection but are excluded from the scope of carbon emissions equivalent statistics.

| GHG emissions carbon equivalent inventory Category 1 - Coolant (2023) |          |             |           |          |        |   |  |  |
|-----------------------------------------------------------------------|----------|-------------|-----------|----------|--------|---|--|--|
|                                                                       |          |             |           | Bi-Metal |        |   |  |  |
|                                                                       | Gangshan |             | Packaging | Material | Zhunan |   |  |  |
| Plant site                                                            | Plant    | Luzhu Plant | Plant     | Plant    | Plant  | - |  |  |
| Carbon                                                                |          |             |           |          |        |   |  |  |
| emissions                                                             |          |             |           |          |        |   |  |  |
| equivalent                                                            |          |             |           |          |        |   |  |  |
| (ton_CO <sub>2</sub> -e)                                              | 13.5784  | 1.9597      | 0.5080    | 8.7041   | 0.2858 | - |  |  |
| Total                                                                 | 25.0359  |             |           |          |        |   |  |  |

### 2023 Direct fugitive emissions (coolants) of

# GHG from anthropogenic systems Total emissions equivalent 25.0359 ton\_CO<sub>2</sub>-e

# Category 1 Direct fugitive emissions (septic tanks) of GHG from anthropogenic systems

| Employee monthly working hours |                |             |                    |                            |              |  |  |  |  |
|--------------------------------|----------------|-------------|--------------------|----------------------------|--------------|--|--|--|--|
| Working hours (hr)             | Gangshan Plant | Luzhu Plant | Packaging<br>Plant | Bi-Metal<br>Material Plant | Zhunan Plant |  |  |  |  |
| 1                              | 22937.5000     | 6099.0000   | 3143.0000          | 4557.0000                  | 3628.0000    |  |  |  |  |
| 2                              | 27588.5000     | 7652.0000   | 3580.0000          | 5296.5000                  | 4252.0000    |  |  |  |  |
| 3                              | 33605.0000     | 8651.0000   | 4417.0000          | 6696.0000                  | 5329.0000    |  |  |  |  |
| 4                              | 26226.0000     | 6455.0000   | 3712.0000          | 4800.0000                  | 3851.0000    |  |  |  |  |
| 5                              | 30869.5000     | 8133.0000   | 3706.0000          | 5852.5000                  | 5036.0000    |  |  |  |  |
| 6                              | 29872.5000     | 7399.0000   | 4085.0000          | 5620.5000                  | 4830.5000    |  |  |  |  |
| 7                              | 30841.0000     | 7803.0000   | 4247.0000          | 5546.5000                  | 4504.0000    |  |  |  |  |
| 8                              | 31129.0000     | 7978.0000   | 4558.0000          | 6228.5000                  | 4920.5000    |  |  |  |  |
| 9                              | 27285.0000     | 7362.5000   | 4017.5000          | 5792.0000                  | 3998.5000    |  |  |  |  |
| 10                             | 25713.0000     | 7105.0000   | 3966.5000          | 5533.0000                  | 3718.0000    |  |  |  |  |
| 11                             | 27764.5000     | 7830.5000   | 4139.0000          | 6123.0000                  | 4168.5000    |  |  |  |  |
| 12                             | 26055.0000     | 7594.0000   | 3989.0000          | 5650.0000                  | 3759.0000    |  |  |  |  |
| Subtotal (hr)                  | 339886.5000    | 90062.0000  | 47560.0000         | 67695.5000                 | 51995.0000   |  |  |  |  |

| Non-employee monthly working hours |                |             |                    |                            |              |  |  |  |
|------------------------------------|----------------|-------------|--------------------|----------------------------|--------------|--|--|--|
| Working hours (I                   | Gangshan Plant | Luzhu Plant | Packaging<br>Plant | Bi-Metal<br>Material Plant | Zhunan Plant |  |  |  |
| 1                                  | 872.0000       | 744.0000    | 312.0000           | 128.0000                   | -            |  |  |  |
| 2                                  | 832.0000       | 672.0000    | 288.0000           | 160.0000                   | -            |  |  |  |
| 3                                  | 936.0000       | 744.0000    | 324.0000           | 192.0000                   | -            |  |  |  |
| 4                                  | 856.0000       | 720.0000    | 300.0000           | 136.0000                   | -            |  |  |  |
| 5                                  | 920.0000       | 744.0000    | 324.0000           | 176.0000                   | -            |  |  |  |
| 6                                  | 888.0000       | 720.0000    | 312.0000           | 168.0000                   | -            |  |  |  |
| 7                                  | 912.0000       | 744.0000    | 312.0000           | 168.0000                   | -            |  |  |  |
| 8                                  | 928.0000       | 744.0000    | 324.0000           | 184.0000                   | -            |  |  |  |
| 9                                  | 888.0000       | 720.0000    | 312.0000           | 168.0000                   | -            |  |  |  |
| 10                                 | 904.0000       | 744.0000    | 312.0000           | 160.0000                   | -            |  |  |  |
| 11                                 | 896.0000       | 720.0000    | 312.0000           | 176.0000                   | -            |  |  |  |
| 12                                 | 912.0000       | 744.0000    | 312.0000           | 168.0000                   | -            |  |  |  |
| Subtotal (hr)                      | 10744.0000     | 8760.0000   | 3744.0000          | 1984.0000                  | -            |  |  |  |

| 2023 to                   | 2023 total working hours of employees and non-employees |             |                    |                               |                 |  |  |  |  |
|---------------------------|---------------------------------------------------------|-------------|--------------------|-------------------------------|-----------------|--|--|--|--|
| Plant site                | Gangshan<br>Plant                                       | Luzhu Plant | Packaging<br>Plant | Bi-Metal<br>Material<br>Plant | Zhunan<br>Plant |  |  |  |  |
| <b>Employees</b>          | 339886.5000                                             | 90062.0000  | 47560.0000         | 67695.5000                    | 51995.0000      |  |  |  |  |
| Non-<br>employees         | 10744.0000                                              | 8760.0000   | 3744.0000          | 1984.0000                     | 0.0000          |  |  |  |  |
| Total<br>Working<br>Hours | 350630.5000                                             | 98822.0000  | 51304.0000         | 69679.5000                    | 51995.0000      |  |  |  |  |

| GHG emissions factor and GWP value |                 |  |  |  |  |
|------------------------------------|-----------------|--|--|--|--|
| GHG                                | $\mathrm{CH}_4$ |  |  |  |  |
| Emission factor (ton/hr)           | 0.000015938     |  |  |  |  |
| GWP value                          | 27.9            |  |  |  |  |

| (1) Emissi<br>GWP                             | (1) Emissions equivalent = Working hours (subtotal) x CH4 emission factor x CH <sub>4</sub> GWP |             |                    |                               |              |  |  |  |  |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------|-------------|--------------------|-------------------------------|--------------|--|--|--|--|--|
| Plant site                                    | Gangshan<br>Plant                                                                               | Luzhu Plant | Packaging<br>Plant | Bi-Metal<br>Material<br>Plant | Zhunan Plant |  |  |  |  |  |
| Total<br>Working<br>Hours                     | 350630.5000                                                                                     | 98822.0000  | 51304.0000         | 69679.5000                    | 51995.0000   |  |  |  |  |  |
| Emissions equivalent (ton_CO <sub>2</sub> -e) | 15.5905                                                                                         | 4.3943      | 2.2822             | 3.0997                        | 2.3129       |  |  |  |  |  |
| Total (ton_CO <sub>2</sub> -e)                | 27.6796                                                                                         |             |                    |                               |              |  |  |  |  |  |

Note: Non-employees include cleaning personnel and security guards.

# 2023 Direct fugitive emissions (septic tanks) of GHG from anthropogenic systems Total emissions equivalent 27.6796 ton\_CO<sub>2</sub>-e

### Laser welding of dissimilar metals

| Laser welding of dissimilar metals           |                   |                |                    |                               |                 |  |
|----------------------------------------------|-------------------|----------------|--------------------|-------------------------------|-----------------|--|
| Plant site                                   | Gangshan<br>Plant | Luzhu<br>Plant | Packaging<br>Plant | Bi-Metal<br>Material<br>Plant | Zhunan<br>Plant |  |
| ttw-M2 quantity (g) Dimension: 1.0mm, 0.6mm  | 0                 | 0              | 0                  | 600                           | 0               |  |
| Emissions equivalent (kg_CO <sub>2</sub> -e) | 0.0000            | 0.0000         | 0.0000             | 0.0191                        | 0.0000          |  |

| ttw-M2 metal welding rod metal material carbon content ratio and GHG emissions |                 |  |  |
|--------------------------------------------------------------------------------|-----------------|--|--|
| factor                                                                         |                 |  |  |
| <b>Greenhouse Gas Emissions</b>                                                | $\mathrm{CO}_2$ |  |  |
| Emission factor                                                                | 3.666666667     |  |  |
| Carbon content ratio (%)                                                       | 0.87            |  |  |
| Carbon emissions = Metal material weight x Carbon content ratio                |                 |  |  |
| (%) x Emission factor                                                          |                 |  |  |

For the project, R&D welding prototyping was performed during Q3 of 2023, and the R&D prototyping consumption amount in 2023 was 600g. Based on the carbon content ratio of 0.87% (material certificate provided by the supplier), the carbon emissions is calculated to be 0.0191kg\_CO<sub>2</sub>-e, and for the expression in ton\_CO<sub>2</sub>-e, the carbon emissions is calculated to be 0.0000ton\_CO<sub>2</sub>-e.

2023 Direct emissions from metal laser welding of R&D processes

Total emissions equivalent 0.0000 ton\_CO<sub>2</sub>-e

# High pressure gas circuit breakers

| High pressure gas circuit breakers (GCB) protection gas SF <sub>6</sub> (Unit: g) |                   |                |                    |                               |                 |  |  |  |  |  |
|-----------------------------------------------------------------------------------|-------------------|----------------|--------------------|-------------------------------|-----------------|--|--|--|--|--|
| Plant site                                                                        | Gangshan<br>Plant | Luzhu<br>Plant | Packaging<br>Plant | Bi-Metal<br>Material<br>Plant | Zhunan<br>Plant |  |  |  |  |  |
| Gas circuit breakers (GCB) quantity (units)                                       | 2                 | 0              | 0                  | 0                             | 0               |  |  |  |  |  |
| Filling amount of current year (g)                                                | 0.0000            | 0.0000         | 0.0000             | 0.0000                        | 0.0000          |  |  |  |  |  |
| Emissions equivalent (ton_CO <sub>2</sub> -e)                                     | 0.0000            | 0.0000         | 0.0000             | 0.0000                        | 0.0000          |  |  |  |  |  |

| Gas circuit breaker (GCB) protection gas SF6 GHG emissions factor and GWP value |                                             |  |  |  |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| GHG                                                                             | SF <sub>6</sub> sulfur hexafluoride         |  |  |  |  |  |
| Emission factor                                                                 | 1.000000000                                 |  |  |  |  |  |
| GWP value                                                                       | 25200                                       |  |  |  |  |  |
| $SF_6$ emissions = Filli                                                        | ng amount of current year x Emission factor |  |  |  |  |  |
|                                                                                 | x GWP value                                 |  |  |  |  |  |





| 温室氣體化學式                                                                                             | AR2<br>(1995) | AR3<br>(2001) | AR4<br>(2007) | AR5<br>(2014) | AR6<br>(2021) |
|-----------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|
| HFC-245ca · 1,1,2,2,3-五泉<br>丙烷 · CH <sub>2</sub> FCF <sub>2</sub> CHF <sub>2</sub>                  | 560           | 640           | 693           | 716           | 787           |
| HFC-245fa・1,1,1,3,3-五亂<br>丙烷・CHF <sub>2</sub> CH <sub>2</sub> CF <sub>3</sub>                       | -             | 950           | 1,030         | 858           | 962           |
| HFC-365mfc・1,1,1,3,3-五<br>義丁烷・CF <sub>2</sub> CH <sub>2</sub> CF <sub>2</sub> CH <sub>3</sub>       | -             | 890           | 794           | 804           | 914           |
| HFC-43-10mce。<br>1,1,1,2,2,3,4,5,5,5-十氟戊<br>烷。CF <sub>3</sub> CHFCHFCF <sub>2</sub> CF <sub>3</sub> | 1,300         | 1,500         | 1,640         | 1,650         | 1,600         |
| Chlorocarbons and Hydroc                                                                            | hlorocar      | bons          |               |               |               |
| Methylchloroform •<br>CH <sub>3</sub> CCl <sub>3</sub>                                              | 100           | 140           | 146           | 160           | 161           |
| Methylchloride • CH <sub>3</sub> Cl                                                                 | 4             | 16            | 13            | 12            | 6             |
| Methylenechloride · CH <sub>2</sub> Cl <sub>2</sub>                                                 | 9             | 10            | 8.7           | 9             | 11            |
| Chloroform · CHCl <sub>3</sub>                                                                      | -             | 30            | 31            | 16            | 21            |
| Fully Fluorinated Species                                                                           | 0 (           |               |               |               |               |
| NF3·三氟化氮                                                                                            | -             | 10,800        | 17,200        | 16,100        | 17,400        |
| SF6·六氟化硫                                                                                            | 23,900        | 22,200        | 22,800        | 23,500        | 25,200        |
| PFC-14·四氟化碳·CF。                                                                                     | 6,500         | 5,700         | 7,390         | 6,630         | 7,380         |
| PFC-116,六氟乙烷,C <sub>2</sub> F <sub>6</sub>                                                          | 9,200         | 11,900        | 12,200        | 11,100        | 12,400        |
| PFC-218・C <sub>3</sub> F <sub>8</sub> ・全義丙烷                                                         | 7,000         | 8,600         | 8,830         | 8,900         | 9,290         |
| PFC-318。c-C <sub>4</sub> F <sub>8</sub> 。八氣環<br>丁烷                                                  | 8,700         | 10,000        | 10,300        | 9,540         | 170           |
| C <sub>4</sub> F <sub>10</sub> ,全氟丁烷                                                                | 7,000         | 8,600         | 8,860         | 9,200         | 10,000        |
| Perfluorocyclopentene。c-<br>C <sub>5</sub> F <sub>8</sub> ,八氟環戊烯                                    | -             | 540           |               | 2             | -             |
| PFC-4-1-12 · C <sub>5</sub> F <sub>12</sub> (n-<br>C <sub>5</sub> F <sub>12</sub> ) · 全氣戊烷          | 7,500         | 8,900         | 9,160         | 8,550         | 9220          |
| PFC-5-1-14 · C <sub>6</sub> F <sub>14</sub> (n-<br>C <sub>6</sub> F <sub>14</sub> ) · 全氟己烷          | 7,400         | 9,000         | 9,300         | 7,910         | 8620          |
| 混合冷媒                                                                                                | 20 0          | 7.            | 0 0           |               |               |
| R-401A · HCFC-22/HFC-<br>152a/HCFC-<br>124(53.0/13.0/34.0)                                          | 1,126         | 1,127         | 1,182         | 1,130         | 1,263         |

 $SF_6$  emissions = Filling amount of current year x Emission factor x GWP value 0x1.0000000000x25200=0 (ton  $CO_2$ -e)

| GHG chemical | Emission factor | GWP   |  |  |  |  |  |  |
|--------------|-----------------|-------|--|--|--|--|--|--|
| SF6, sulfur  | 1.0000000000    | 25200 |  |  |  |  |  |  |

Information source: Calculation according to mass balance approach

# High pressure gas circuit breakers (GCB) protection gas SF<sub>6</sub>

# Total emissions equivalent 0 ton\_CO<sub>2</sub>-e

GHG emissions carbon equivalent inventory Category 1 - Fire extinguishers (2023)

| Plant site                    | Dry powder fire extinguisher type        | Quantity (units) | Remarks                                                              |
|-------------------------------|------------------------------------------|------------------|----------------------------------------------------------------------|
| Gangshan<br>Plant             | ABC type (general, oil, electrical fire) | 79               | Without carbon content;<br>therefore, no calculation<br>is necessary |
| Luzhu<br>Plant                | ABC type (general, oil, electrical fire) | 19               | Without carbon content;<br>therefore, no calculation<br>is necessary |
| Packaging<br>Plant            | ABC type (general, oil, electrical fire) | 11               | Without carbon content;<br>therefore, no calculation<br>is necessary |
| Bi-Metal<br>Material<br>Plant | ABC type (general, oil, electrical fire) | 14               | Without carbon content,<br>and no calculation is<br>necessary        |
| Zhunan<br>Plant               | ABC type (general, oil, electrical fire) | 7                | Without carbon content;<br>therefore, no calculation<br>is necessary |

**Note:** Fire extinguisher type •ABC dry powder: Without carbon content, and no calculation is necessary; •BC type dry powder: Depending on its content, if the content refers to sodium bicarbonate (NaHCO<sub>3</sub>), then calculation is necessary; •Carbon dioxide: Its content refers to CO<sub>2</sub>, and calculation is necessary; •KBC type: Its content refers to potassium bicarbonate (KHCO<sub>3</sub>), and calculation is necessary; •HFC: For HFC-227ea, HFC-23 and HFC-236fa, the calculation is necessary.



All plant sites use ABC type dry powder fire extinguishers, and such fire extinguishers contain no carbon content.

Total emissions equivalent 0 ton\_CO2-e

# **Category 2 Indirect emissions from imported energy (2023)**

2023 Monthly electricity consumption of each plant site (unit: kWh) (\*cross-month calculation)

| Plant site     | Gangshan<br>Plant | Luzhu Plant | Packaging<br>Plant | Bi-Metal<br>Material<br>Plant | Zhunan Plant |
|----------------|-------------------|-------------|--------------------|-------------------------------|--------------|
| 1              | 439400            | 175840      | 5174.5832*         | 17360                         | 32343.3335*  |
| 2              | 552800            | 292240      | 3528               | 20000                         | 26760        |
| 3              | 701000            | 269920      | 4234               | 27720                         | 24360        |
| 4              | 573000            | 253200      | 4939               | 21840                         | 25920        |
| 5              | 658600            | 269680      | 5645               | 27280                         | 31320        |
| 6              | 674400            | 241040      | 5645               | 31120                         | 32280        |
| 7              | 668000            | 233840      | 5645               | 34880                         | 35880        |
| 8              | 726000            | 225600      | 7056               | 37440                         | 37680        |
| 9              | 581600            | 212960      | 5645               | 32840                         | 24960        |
| 10             | 510400            | 217040      | 6350               | 29360                         | 18120        |
| 11             | 493200            | 240800      | 4939               | 28320                         | 16560        |
| 12             | 428800            | 242160      | 4797.8857*         | 24400                         | 23677.4515*  |
| Subtotal (kWh) | 7007200           | 2874320     | 63598.4689         | 332560                        | 329860.7850  |

| Electricity emission | The 2023 electricity emission factor announced by the |
|----------------------|-------------------------------------------------------|
| factor               | Bureau of Energy is 0.4940 kgCO <sub>2</sub> e/kWh.   |

| Emissions equivalent = Electricity consumption (subtotal) x Electricity emission factor / 1000(ton_CO <sub>2</sub> -e) |                                                                                 |           |         |          |          |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------|---------|----------|----------|--|--|--|
| Emissions equivalent                                                                                                   | Gangshan Plant  Luzhu Plant  Packaging Plant  Bi-Metal Material Plant  Zhunan I |           |         |          |          |  |  |  |
| (ton_CO <sub>2</sub> -e)                                                                                               | 3461.5568                                                                       | 1419.9141 | 31.4176 | 164.2846 | 162.9512 |  |  |  |
| Total (ton_CO <sub>2</sub> -e)                                                                                         | Total 5240 1243                                                                 |           |         |          |          |  |  |  |

# 2023 Imported energy (electricity) Total emissions equivalent 5240.1243 ton\_CO<sub>2</sub>-

e

# Summarization of GHG CO2\_e Emissions of Each Plant Regional Boundary

4.1 2023 GHG total emissions according to category, type of GHG and emission source are described in the following table

Table 4.1.1 Gangshan Plant GHG Emissions Summary
Table

| Category 1: Direct GHG emissions and remov (tonCO <sub>2</sub> -e)                     |          |                 |                  |                                     |                  | 95.6      | 6772                    | 2               |     |
|----------------------------------------------------------------------------------------|----------|-----------------|------------------|-------------------------------------|------------------|-----------|-------------------------|-----------------|-----|
| Item                                                                                   | Subtotal | Percen<br>ge (% | 1 ( 1)           | CH <sub>4</sub>                     | N <sub>2</sub> O | HFCs      | <b>PFC</b> <sub>s</sub> | SF <sub>6</sub> | NF3 |
| Direct emissions from stationary combustion                                            | 18.5539  | 0.522           | 18.535           | 0.0093                              | 0.0091           | -         | -                       | 1               | -   |
| Direct emissions from mobile combustion                                                | 47.8600  | 1.345           | 46.450           | 0.2934                              | 1.1165           | -         | _                       | 1               | -   |
| Direct emissions from industrial processes and removals                                |          | 0.003           | 0.0944           |                                     | -                | -         | -                       | -               | -   |
| Direct fugitive emissions of GHG from anthropogenic systems                            |          | 0.820           | -                | 15.5905                             | -                | 13.5784   | -                       | -               | -   |
| Total                                                                                  | 95.6772  | 2.690           | 65.0800          | 15.8932                             | 1.1256           | 13.5784   | -                       | -               | -   |
| Category 2: Indirect Glenergy (tonCO <sub>2</sub> -e)                                  | HG emiss | sions f         | rom imp          | orted                               | ,                | 3461      | .550                    | 68              |     |
| Item                                                                                   | Tota     |                 | ercent<br>ge (%) | Signi                               | ifican           | ce iden   | tifica                  | atio            | n   |
| Imported electricity/energy                                                            | 3461.55  | 68 97           | <b>'.310</b>     | GHG emi<br>or importe<br>cold energ | ed energ         | y (steam, | therm                   |                 |     |
| [Category 1 ±                                                                          | Catego   | ry <b>2</b> 1   |                  |                                     |                  |           |                         |                 |     |
| [Category 1 + Category 2]<br>Gangshan Plant GHG emissions (ton<br>CO <sub>2</sub> - e) |          |                 |                  |                                     | 355              | 7.23      | <b>40</b>               |                 |     |

Table 4.1.2 Luzhu Plant GHG Emissions Summary Table

| Category 1: Direct (tonCO2-e)                                                 | and           | remova             | als                               | 185.            | .094                | <b>14</b> |          |                 |         |
|-------------------------------------------------------------------------------|---------------|--------------------|-----------------------------------|-----------------|---------------------|-----------|----------|-----------------|---------|
| Item                                                                          | Subtotal      | Percenta<br>ge (%) | CO <sub>2</sub>                   | CH <sub>4</sub> | N <sub>2</sub> O    | HFCs      | PFC<br>s | SF <sub>6</sub> | NF<br>3 |
| Direct emissions from stationary combustion                                   | 163.0310      | 10.157             | 162.8707                          | 0.0810          | 0.0793              | -         | -        | •               | -       |
| Direct emissions from mobile combustion                                       | 15.6754       | 0.977              | 15.4310                           | 0.0227          | 0.2217              | ı         | -        | •               | -       |
| Direct emissions from industrial processes and removals                       | 0.0340        | 0.002              | 0.0340                            | -               | -                   | -         | -        | -               | -       |
| Direct fugitive emissions of<br>GHG from anthropogenic<br>systems             | 6.3540        | 0.396              | -                                 | 4.3943          | -                   | 1.9597    | -        | -               | -       |
|                                                                               | 185.0944      |                    | 178.3357                          |                 |                     |           | -        | -               | -       |
| Category 2: Indirect energy (tonCO <sub>2</sub> -e)                           | GHG er        | nissions           | from                              | import          | <mark>ed</mark> 142 | 19.91     | 141      |                 |         |
| Item                                                                          | Subtota       | l Peroge (         | centa<br>%)                       | Signi           | ficanc              | e iden    | tific    | atio            | n       |
| Imported electricity/energy                                                   | <b>.468</b> o | r impo             | ssions fr<br>rted en<br>old energ | ergy (s         | team,               | the       | rmal     |                 |         |
| [Category 1 + Category 2]  Luzhu Plant GHG emissions  (tonCO <sub>2</sub> -e) |               |                    |                                   |                 | 160                 | 5.00      | 85       |                 |         |

Table 4.1.3 Packaging Plant GHG Emissions Summary
Table

| Category 1: Direct (tonCO <sub>2</sub> -e)                                      | GHG ei   | remov              | vals            | 11              | .261             | 15                                |          |                 |                 |
|---------------------------------------------------------------------------------|----------|--------------------|-----------------|-----------------|------------------|-----------------------------------|----------|-----------------|-----------------|
| Item                                                                            | Suntatal | Percenta<br>ge (%) | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | HFCs                              | PFCs     | SF <sub>6</sub> | NF <sub>3</sub> |
| Direct emissions from stationary combustion                                     | -        | -                  | -               | _               | -                | -                                 | -        | -               | -               |
| Direct emissions from mobile combustion                                         | 8.4713   | 19.849             | 8.3393          | 0.0122          | 0.1198           | -                                 | _        | -               | -               |
| Direct emissions from industrial processes and removals                         |          | -                  | -               | -               | -                | -                                 | -        | -               |                 |
| Direct fugitive emissions of GHG from anthropogenic systems                     |          | 6.537              | -               | 2.2822          | -                | 0.5080                            | -        | -               | -               |
| Total                                                                           | 11.2615  | 26.386             | 8.3393          | 2.2944          | 0.1198           | 0.5080                            | -        | -               | -               |
| Category 2: Indirect energy (tonCO <sub>2</sub> -e)                             | GHG er   | nissions           | from            | impor           | rted .           | 31                                | .417     | 76              |                 |
| Item                                                                            | Subtot   | 'al                | centa<br>(%)    | Sign            | nificar          | nce ide                           | entific  | catio           | n               |
| Imported electricity/energy                                                     | 31.417   | 76 73              | .614            | or impo         | rted ener        | from in<br>gy (stear<br>h pressur | m, therr |                 |                 |
| [Category 1 + Category 2] Packaging Plant GHG emissions (tonCO <sub>2</sub> -e) |          |                    |                 |                 | 42               | 2.67                              | 91       |                 |                 |

Table 4.1.4 Bi-Metal Material Plant GHG Emissions Summary Table

| Category 1: Direct (tonCO <sub>2</sub> -e)                                                                                                                        | GHG e     | mission            | remo            | vals            | 22               | .046    | 60      |                 |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|-----------------|-----------------|------------------|---------|---------|-----------------|-----------------|
| Item                                                                                                                                                              | Siihtatal | Percenta<br>ge (%) | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | HFCs    | PFCs    | SF <sub>6</sub> | NF <sub>3</sub> |
| Direct emissions from stationary combustion                                                                                                                       | 0.0163    | 0.009              | 0.0163          | 0.0000          | 0.0000           | -       | -       | -               | -               |
| Direct emissions from mobile combustion                                                                                                                           | 10.2259   | 5.488              | 9.8177          | 0.0988          | 0.3094           | -       | -       | -               | -               |
| Direct emissions from industrial processes and removals                                                                                                           |           | -                  | -               | -               | -                | -       | -       | •               | -               |
| Direct fugitive emissions of GHG from anthropogenic systems                                                                                                       | 11.8038   |                    | -               | 3.0997          | -                | 8.7041  | -       | -               | -               |
| Total                                                                                                                                                             | 22.0460   | 11.832             | 9.8340          | 3.1985          | 0.3094           | 8.7041  | -       | -               | -               |
| Category 2: Indirect energy (tonCO <sub>2</sub> -e)                                                                                                               | GHG ei    | missions           | from            | impor           | rted             | 164     | 4.28    | 46              |                 |
| Item                                                                                                                                                              | Subto     | tal 🗀              | ercent<br>e (%) | Sign            | nificar          | ice ide | entific | catio           | n               |
| Imported electricity/energy  164.2846  88.168  GHG emissions from imported electricity or imported energy (steam, thermal energon cold energy, high pressure air) |           |                    |                 |                 |                  |         |         |                 |                 |
| [Category 1 + Category 2] <b>Bi-Metal Material Plant</b> GHG  emissions (tonCO <sub>2</sub> -e)                                                                   |           |                    |                 |                 | 18               | 86.33   | 306     |                 |                 |

**Table 4.1.5 Zhunan Plant GHG Emissions Summary Table** 

| Category 1: Direct (tonCO <sub>2</sub> -e)                                           | GHG e     | missions           | and             | remov                              | vals             | 2.       | 730  | 8               |                 |
|--------------------------------------------------------------------------------------|-----------|--------------------|-----------------|------------------------------------|------------------|----------|------|-----------------|-----------------|
| Item                                                                                 | SIINTATAL | Percenta<br>ge (%) | CO <sub>2</sub> | СН4                                | N <sub>2</sub> O | HFCs     | PFCs | SF <sub>6</sub> | NF <sub>3</sub> |
| Direct emissions from<br>stationary combustion                                       | -         | -                  | -               | _                                  | -                | -        | -    | -               | -               |
| Direct emissions from mobile combustion                                              | 0.1321    | 0.080              | 0.1300          | 0.0002                             | 0.0019           | _        | -    | -               | -               |
| Direct emissions from industrial processes and removals                              | _         | -                  | -               | -                                  | -                | -        | -    | -               | -               |
| Direct fugitive emissions of GHG from anthropogenic systems                          |           | 1.568              | -               | 2.3129                             | -                | 0.2858   | -    | -               | -               |
| Total                                                                                | 2.7308    | 1.648              | 0.1300          | 2.3131                             | 0.0019           | 0.2858   | -    | -               | -               |
| Category 2: Indirect energy (tonCO <sub>2</sub> -e)                                  | GHG e     | missions           | from            | impor                              | rted .           | 162      | 2.95 | 12              |                 |
| Item                                                                                 | Subto     | tal                | centa<br>(%)    | Significance identification        |                  |          |      | n               |                 |
|                                                                                      |           |                    | or impo         | missions<br>rted ener<br>ergy, hig | gy (stear        | n, theri |      |                 |                 |
| [Category 1 + Category 2] <b>Zhunan Plant</b> GHG emissions  (tonCO <sub>2</sub> -e) |           |                    |                 |                                    | 16               | 55.68    | 320  |                 |                 |

# 2023 Sheh Kai Precision GHG Emissions Statistics Category 1~2

| Cat | Plant site                                                                        | Gangshan<br>Plant | Luzhu Plant | Packaging<br>Plant | Bi-Metal<br>Material<br>Plant | Zhunan<br>Plant | Inventory<br>Category<br>Subtotal |
|-----|-----------------------------------------------------------------------------------|-------------------|-------------|--------------------|-------------------------------|-----------------|-----------------------------------|
| 1   | Direct emissions from stationary combustion (natural gas, power generator diesel) | 18.5539           | 163.0310    | 0.0000             | 0.0163                        | 0.0000          | 181.6012                          |
| 1   | Direct emissions from mobile combustion (vehicle gasoline, diesel)                | 47.8600           | 15.6754     | 8.4714             | 10.2259                       | 0.1321          | 82.3648                           |
| 1   | Direct emissions from industrial processes (acetylene, anti-rust oil)             | 0.0944            | 0.0340      | 0.0000             | 0.0000                        | 0.0000          | 0.1284                            |
| 1   | Direct fugitive emissions (coolant) of GHG from anthropogenic systems             | 13.5784           | 1.9597      | 0.5080             | 8.7041                        | 0.2858          | 25.0360                           |
|     | Direct fugitive emissions (septic tank) of GHG from anthropogenic systems         | 15.5905           | 4.3943      | 2.2822             | 3.0997                        | 2.3129          | 27.6796                           |
|     | Laser welding of metal materials                                                  | 0.0000            | 0.0000      | 0.0000             | 0.0000                        | 0.0000          | О                                 |
|     | High pressure gas<br>circuit breakers (SF <sub>6</sub><br>gas)                    | 0.0000            | 0.0000      | 0.0000             | 0.0000                        | 0.0000          | 0                                 |
| 1   | Fire extinguishers (ABC type)                                                     | 0.0000            | 0.0000      | 0.0000             | 0.0000                        | 0.0000          | 0                                 |
|     | Total                                                                             | 95.6772           | 185.0944    | 11.2616            | 22.0460                       | 2.7308          | 316.8100                          |
| 2   | Imported energy (electricity)                                                     | 3461.5568         | 1419.9141   | 31.4176            | 164.2846                      | 162.9512        | 5240.1243                         |

| Plant site<br>Category | Gangshan<br>Plant | Luzhu Plant | Packaging<br>Plant | Bi-Metal<br>Material Plant | Zhunan Plant | Category Total |
|------------------------|-------------------|-------------|--------------------|----------------------------|--------------|----------------|
| 1                      | 95.6772           | 185.0944    | 11.2616            | 22.0460                    | 2.7308       | 316.8100       |
| 2                      | 3461.5568         | 1419.9141   | 31.4176            | 164.2846                   | 162.9512     | 5240.1243      |
| Total                  | 3557.234          | 1605.009    | 42.679             | 186.331                    | 165.682      | 5556.934       |

Category  $1+\overline{2}$ 

**Total emissions equivalent 5556.934** 

# ton\_CO2-e

## **Chapter 5 GHG Quantification**

#### **5.1 Qualification Method**

### **5.1.1 Quantitative Principle**

The calculation of GHG emissions of each emission source of the Company mainly adopts the "Emission Factor Approach" and the "Mass Balance Approach".

Emission Factor Approach: It refers to multiplying the consumption amount of raw (fuel) materials by the corresponding emission factor, and further multiplying the result obtained by the global warming potential (GWP) coefficient according to the each type of GHG emissions generated, in order to calculate the GHG emissions. The calculation equation is as follows:

GHG emissions equivalent

- = Activity data × Emission factor × Global warming potential (GWP) coefficient
- Mass Balance Approach: It refers to the method of using in/out, generation, consumption and conversion balance of the substance mass and energy in a process or chemical equation, in order to calculate the emission.
  - (1) For the emission of each GHG, the data unit is converted into kilogram, gram (weight unit) or liter (volume unit) for recording according to different sources.
  - (2) For different emissions sources, the emission factor and calculation method provided in the "GHG Emission Factor Management Table Version 6.0.4 (2019.06)" of the Ministry of Environment are used for calculation.
  - (3) The "GHG Inventory Table" used by the Company is adjusted and summarized according to the "GHG Inventory Table Version 3.0.0 (Revised)" announced on the GHG Emissions Information Platform of the Ministry of Environment.
  - (4) After the emission factor is selected, for the value calculated, the global warming potential (GWP) for different types of GHG announced in the IPCC2021 Sixth Assessment Report is further used in order to convert all calculation results into CO<sub>2</sub>e (carbon dioxide equivalent), and the unit is metric ton CO<sub>2</sub>e/year. The GWP values used by the Company are summarized in the following Table 5.1.

Table 5.1 GWP Values of IPCC Announced Substances

| Substance Name  | GWP Values of IPCC Sixth Assessment<br>Report (2021) AR6 |
|-----------------|----------------------------------------------------------|
| $CO_2$          | 1                                                        |
| CH <sub>4</sub> | 27.9                                                     |
| $N_2O$          | 273                                                      |
| HFC-134a/R-134a | 1530                                                     |
| R-410A          | 2256                                                     |
| R-407C          | 1908                                                     |
| R-600a          | GWP value not yet announced                              |
| SF <sub>6</sub> | 25200                                                    |

#### **5.1.2** Calculation Method

#### **5.1.2.1 Category 1 Stationary Combustion Sources**

- (1) Natural gas CO<sub>2</sub>e emissions
  - = (Natural gas consumption x CO<sub>2</sub> emission factor x CO<sub>2</sub> GWP) + (Natural gas consumption x CH<sub>4</sub> emission factor x CH<sub>4</sub> GWP) + (Natural gas consumption x N<sub>2</sub>O emission factor x N<sub>2</sub>O GWP)
- (2) Emergency power generator (diesel) CO<sub>2</sub>e emissions
  - = (Diesel consumption x CO<sub>2</sub> emission factor x CO<sub>2</sub> GWP) + (Diesel consumption x CH<sub>4</sub> emission factor x CH<sub>4</sub> GWP) + (Diesel consumption x N<sub>2</sub>O emission factor x N<sub>2</sub>O GWP)

#### **5.1.2.2 Category 1 Mobile Combustion Sources**

- (1) Vehicle gasoline CO<sub>2</sub>e emissions
  - = (Vehicle gasoline consumption x CO<sub>2</sub> emission factor x CO<sub>2</sub> GWP)

(Vehicle gasoline consumption x CH<sub>4</sub> emission factor x CH<sub>4</sub> GWP)

(Vehicle gasoline consumption x N<sub>2</sub>O emission factor x N<sub>2</sub>O GWP)

- (2) Diesel CO<sub>2</sub>e emissions
  - = (Diesel consumption x CO<sub>2</sub> emission factor x CO<sub>2</sub> GWP) + (Diesel consumption x CH<sub>4</sub> emission factor x CH<sub>4</sub> GWP) + (Diesel consumption x N<sub>2</sub>O emission factor x N<sub>2</sub>O GWP)

#### **5.1.2.3 Category 1 Process Emission Sources**

- (1) Acetylene  $CO_2$ e emissions = Acetylene consumption amount x  $CO_2$  emission factor x  $CO_2$  GWP
  - $ightharpoonup CO_2$  emission factor is calculated based on the mass balance approach,  $C_2H_2+2.5O_2\rightarrow 2CO_2+H_2O$ , and for the burning of 1 mole  $C_2H_2$  (molecular weight of 26), 2 mole  $CO_2$  (molecular weight of 88) is generated; therefore, the  $CO_2$  emission factor=88/26=3.3846153846(kg/kg acetylene)
- (2) WD40 anti-rust oil CO 2e emissions
  - = WD40 anti-rust oil consumption amount x Specific weight x Carbon content ratio x CO<sub>2</sub> emission factor x CO<sub>2</sub> GWP
  - ➤ WD40 anti-rust oil specific weight=0.81 (reference to SDS safety data sheet)
  - ➤ Carbon content ratio is 3% (reference to SDS safety data sheet)
- (3) Wires for electric welding operation CO<sub>2</sub>e emissions
  - = Wire usage weight x Wire carbon content x Emission factor x CO<sub>2</sub> GWP
  - ➤ Wire carbon content is 0.87% indicated in the material certificate (material certificate provided by the supplier)
  - $ightharpoonup CO_2$  emission factor is calculated based on the mass balance approach, C+O<sub>2</sub> $\rightarrow$ CO<sub>2</sub>, and for the burning of 1 mole C (molecular weight of 12), 1 mole CO<sub>2</sub> (molecular weight of 44) is generated; therefore, the CO<sub>2</sub> emission factor=44/12=3.666666667(kg/kg carbon)

#### **5.1.2.4** Category 1 Anthropogenic Fugitive Emission Sources

- (1) Coolant  $CO_2$ e missions = Equipment specification filling amount x Coolant fugitive emissions rate x Coolant GWP
  - ➤ Coolant fugitive emissions rate and emission factor refer to the GHG Emission Factor Management Table Version 6.0.4 of the Ministry of Environment, and the selection is as shown in the following Table 5.2:

Table 5.2 Equipment Coolant Fugitive Emissions Rate

| Equipment name               | Fugitive       | Fugitive emissions rate |
|------------------------------|----------------|-------------------------|
|                              | emissions rate | selected for use (%)    |
|                              | (%)            |                         |
| Household freezer and        | 0.1-0.5        | 0.3%                    |
| refrigerator                 |                |                         |
| Independent commercial       | 1-15           | 8.0%                    |
| freezer and refrigerator     |                |                         |
| Medium and large freezer and | 10-35          | 22.5%                   |
| refrigerator                 |                |                         |
| Freezer and refrigerator for | 15-50          | 20.0%                   |
| transportation purpose       |                |                         |
| Industrial freezer and       | 7-25           | 16.0%                   |
| refrigerator, including food |                |                         |
| processing and refrigeration |                |                         |
| Chiller units                | 2-15           | 8.5%                    |
| Residential and commercial   | 1-10           | 3.0%                    |

| building air conditioner |       |       |
|--------------------------|-------|-------|
| Mobile air purifier      | 10-20 | 15.0% |

- (2) Septic tank  $CO_2e$  emissions = Total number of working hours x  $CH_4$  emission factor x  $CH_4$  GWP
  - ➤ CH<sub>4</sub> Emission factor
    - = BOD emission factor x Average pollution concentration (mg/L) x 10-9 x Wastewater amount per person per hour (L/hour) x Septic tank treatment efficiency
    - $= 0.6 \text{ (tonCH}_4/\text{ton-BOD)} \times 200 \text{(mg/L)} \times 10-9 \times 15.625 \text{(L/hour)} \times 85\%$
    - = 0.0000015938 (tonCH<sub>4</sub>/person-hour)
- (3) Gas circuit breaker(GCB) CO<sub>2</sub>e emissions = Filling amount x Emission factor x SF<sub>6</sub>GWP

#### 5.1.2.5 Category 2 Indirect GHG emissions

- (1) Externally purchased electricity CO<sub>2</sub>e emissions = Electricity consumption in kWh x Electricity emission factor
  - The 2023 electricity emission factor announced by the Bureau of Energy = 0.494 (kgCO<sub>2</sub>e/kWh)

#### **5.2 Emission Factor Selection and Use**

The emission factor selection principle of the Company is to use the factor obtained from measurement or calculated via the mass balance approach in priority, and the national emission factor is used as the secondary option. If no emission factor is available for use, the applicable factor announced internationally is then used. Emission factors are as shown in Table 5.3:

Table 5.3 Table of Emission Factors for Different Emission Sources

| Emission<br>Source<br>Category | Emission<br>Source                 | GHG              | Emission factor | Unit         | Information<br>Source          | Emission Source<br>Location |                  |
|--------------------------------|------------------------------------|------------------|-----------------|--------------|--------------------------------|-----------------------------|------------------|
|                                |                                    | $CO_2$           | 1.8790358400    | Kg/m³        | GHG Emission                   |                             |                  |
|                                |                                    | $CH_4$           | 0.0000334944    | Kg/m³        | Factor                         | Gangshan Plant,             |                  |
| Category 1<br>Stationary       | •                                  | N <sub>2</sub> O | 0.0000033494    | Kg/m³        | Management Table Version 6.0.4 | Luzhu Plant                 |                  |
| (E)                            | (Emergency power generator) Diesel | $CO_2$           | 2.6060317920    | Kg/L         | GHG Emission                   | Gangshan Plant,             |                  |
| (E)                            |                                    | `                | CH <sub>4</sub> | 0.0001055074 | Kg/L                           | Factor M                    | Luzhu Plant, Bi- |
|                                |                                    | N <sub>2</sub> O | 0.0000211015    | Kg/L         | Management Table Version 6.0.4 | Metal Material Plant        |                  |
|                                | ) Vehicle                          | $CO_2$           | 2.2631328720    | Kg/L         | GHG Emission                   |                             |                  |
| Cotogory 1                     |                                    | CH <sub>4</sub>  | 0.0008164260    | Kg/L         | Factor M                       | Gangshan Plant,             |                  |
| Mobile (T)                     |                                    | N <sub>2</sub> O | 0.0002612563    | Kg/L         | Management Table Version 6.0.4 | Bi-Metal Material<br>Plant  |                  |

| Emission<br>Source<br>Category | <b>Emission Source</b>                        | GHG              | Emission factor | Unit            | Information<br>Source                                            | Emission Source<br>Location                                                                        |
|--------------------------------|-----------------------------------------------|------------------|-----------------|-----------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                |                                               | $CO_2$           | 2.6060317920    | Kg/L            | GHG Emission                                                     |                                                                                                    |
|                                | (Company                                      | CH <sub>4</sub>  | 0.0001371596    | Kg/L            | Factor                                                           |                                                                                                    |
|                                | vehicles)<br>Diesel                           | N <sub>2</sub> O | 0.0001371596    | Kg/L            | Management<br>Table Version<br>6.0.4                             | Gangshan Plant                                                                                     |
|                                | /E 1 1 6                                      | $CO_2$           | 2.6060317920    | Kg/L            | GHG Emission                                                     | C 1 D                                                                                              |
|                                | (Fork lift                                    | CH <sub>4</sub>  | 0.0001371596    | Kg/L            | Factor                                                           | Gangshan Plant,                                                                                    |
|                                | trucks)<br>Super<br>diesel                    | N <sub>2</sub> O | 0.0001371596    | Kg/L            | Management<br>Table Version<br>6.0.4                             | Luzhu Plant, Packaging Plant, Zhunan Plant                                                         |
|                                | Acetylene                                     | CO <sub>2</sub>  | 3.3846153846    | Kg/Kg           | Mass balance approach                                            | Gangshan Plant,<br>Luzhu Plant                                                                     |
| Category 1<br>Process (P)      | Anti-rust<br>oil<br>(WD40)                    | CO <sub>2</sub>  | 1.0000000000    | Kg/Kg           | Mass balance approach                                            | Gangshan Plant,<br>Luzhu Plant                                                                     |
| Trocess (r)                    | Wires for<br>electric<br>welding<br>operation | $CO_2$           | 3.66666666667   | Kg/Kg           | Mass balance approach                                            | Bi-Metal Material<br>Plant                                                                         |
|                                | Septic<br>tanks                               | CH <sub>4</sub>  | 0.0000015938    | ton/person-hour | GHG Emission<br>Factor M<br>Management<br>Table Version<br>6.0.4 | Gangshan Plant,<br>Luzhu Plant,<br>Packaging Plant,<br>Bi-Metal Material<br>Plant, Zhunan<br>Plant |
|                                | HFC-<br>134a/R-<br>134a                       | HFCs             | 1.0000000000    | g/g             | GHG Emission<br>Factor<br>Management<br>Table Version<br>6.0.4   | Gangshan Plant,<br>Luzhu Plant,<br>Packaging Plant,<br>Bi-Metal Material<br>Plant, Zhunan<br>Plant |
| Category 1<br>Fugitive<br>(F)  | R-407c                                        | HFCs             | 1.0000000000    | <b>ფ</b> /ფ     | GHG Emission<br>Factor<br>Management<br>Table Version<br>6.0.4   | Gangshan Plant                                                                                     |
|                                | R410a                                         | HFCs             | 1.0000000000    | g/g             | GHG Emission<br>Factor<br>Management<br>Table Version<br>6.0.4   | Gangshan Plant,<br>Luzhu Plant,<br>Packaging Plant,<br>Bi-Metal Material<br>Plant, Zhunan<br>Plant |
|                                | R-600A                                        | HFCs             | 1.0000000000    | g/g             | GHG Emission Factor Management Table Version 6.0.4               | Gangshan Plant, Luzhu Plant, Packaging Plant, Bi-Metal Material Plant                              |
|                                | Gas circuit breakers                          | SF <sub>6</sub>  | 1.0000000000    | g/g             | Mass balance approach                                            | Gangshan Plant,<br>Luzhu Plant                                                                     |

|            | (GCB)                            |              |        |                                                                            |                                                                                                    |
|------------|----------------------------------|--------------|--------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Category 2 | Externally purchased electricity | 0.4940000000 | Kg/kWh | 2023 Electricity<br>emission factor<br>announced by<br>Bureau of<br>Energy | Gangshan Plant,<br>Luzhu Plant,<br>Packaging Plant,<br>Bi-Metal Material<br>Plant, Zhunan<br>Plant |

#### 5.3 Quantitative Calculation Method Change Explanation

When there is any change in the quantitative calculation method, the new quantitative calculation method is used for calculation, and it is also necessary to perform comparison with the original calculation method, and the difference between the two and the reason for the use of the new method shall be explained. The current quantitative calculation method is performed in accordance with the requirements specified by the Ministry of Environment, and there is no change in the quantitative method.

#### **5.4 Emission Factor Selection and Use Explanation**

For the emission calculation factor, if there is any change of the factor indicated in the data source, file must be re-created and calculated, and the difference between the data after change and the original data shall also be explained. The current selection and use of the emission factors are performed in accordance with the requirements specified in the GHG Emission Factor Management Table Version 6.0.4 (2019.06) of the Ministry of Environment, and there is no change in the factors.

#### **5.5 Data Quality Management**

#### 5.5.1 Direct and indirect GHG emission source data quality

- (1) To achieve data quality accuracy, all responsible units are required to explain the data source, such as the purchase basis, flow meter record, quantifier record, pickup record and computer database record or computer documents, etc., and all records and documents capable of proving and supporting the credibility of the data must be investigated. In addition, the data shall be preserved in the responsible units in order to facilitate subsequent inspection and to be used as the tracking basis.
- (2) The purpose of the Company's quality control operation on the 2023 inventory data is to comply with the principles of relevance, completeness, consistency, transparency and accuracy specified in ISO14064-1:2018/CNS 14064-1:2021. The operation content is explained in the following:
- A. Quality audit is handled by internal auditors.
- B. Implementing general quality audit: For general mistakes likely to occur due to negligence and errors during the processes of data collection/input/processing, data file creation and emissions calculation, appropriate quality inspection is performed rigorously.
- C. Performing specific quality audit: For the specific scope of the appropriateness of inventory boundary, re-calculation operation, quality of specific emission source input data, and qualitative explanation for main causes of data uncertainty, rigorous inspection performed.

The contents of the general and specific quality inspection operations are as shown in Table 5.4 and Table 5.5.

**Table 5.4 General Quality Audit Operation Content** 

| Inventory Inspec       | tion | Work content                                                            |
|------------------------|------|-------------------------------------------------------------------------|
| stage                  |      |                                                                         |
|                        | •    | Inspect whether the records of input data contain any error.            |
| Data collection, input | and• | Inspect whether there is any omission in the data filling and recording |
| processing operation   |      | (completeness).                                                         |
|                        | •    | Ensure that the electronic file of appropriate version is executed.     |
|                        | •    | Determine the data source of all primary data (including reference      |
|                        |      | data) in the forms and tables.                                          |
|                        | •    | Inspect that files have been created for all documentations referenced. |
| Data file creation     | •    | Inspect that files have been created for the assumptions and rules      |
|                        |      | selected for application to the following items: boundary, base year,   |
|                        |      | quantitative method, activity data, emission factor and other           |
|                        |      | parameters.                                                             |
|                        | •    | Inspect whether the emissions unit, parameters and conversion           |
|                        |      | coefficients have been properly indicated.                              |
|                        | •    | Inspect whether the units are appropriately indicated and used          |
|                        |      | properly during the calculation process.                                |
|                        | •    | Inspect the conversion coefficient.                                     |
|                        |      | Inspect the data processing steps in the inventory forms and tables.    |
| Calculate emissions    | and  | Inspect that the input data and arithmetic data in the forms and tables |
| inspect calculations   |      | ± ±                                                                     |
|                        |      | shall be clearly distinguished.                                         |
|                        | •    | Inspect the representative samples of the calculation.                  |
|                        | •    | Use simple algorithm to check the calculation.                          |
|                        | •    | Inspect the total of different emission source types and data.          |
|                        | •    | Inspect the consistency between the input and calculation values for    |
|                        |      | different periods and years.                                            |

**Table 5.5 Specific Quality Audit Operation Content** 

| Inventory Inspection type             | Work focus                                                                                                                                                                                                                      |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emission factors and other parameters | • Determine whether the units of the factors or parameters are consistent with the units of the activity data.                                                                                                                  |
|                                       | <ul> <li>Determine whether the unit conversion coefficient is accurate.</li> <li>Determine whether the data collection operation is continuous</li> </ul>                                                                       |
| Activity data                         | <ul> <li>(without interruption).</li> <li>Determine whether relevant historical data has a consistent variation.</li> <li>Perform cross-comparison on the activity data of the same types of facilities/departments.</li> </ul> |

| Inventory Inspection type | Work focus                                                                                                                |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                           | <ul> <li>Determine whether there is correlation between the activity data and<br/>product production capacity.</li> </ul> |
|                           | <ul> <li>Determine whether the activity data changes due to re-calculation of<br/>the base year.</li> </ul>               |
|                           | <ul> <li>Determine whether the computer built-in equations for emissions<br/>calculation are correct.</li> </ul>          |
|                           | • Determine whether historical emissions estimation is consistent.                                                        |
| Emission calculation      | <ul> <li>Perform cross-comparison on the emissions of the same types of<br/>facilities/departments.</li> </ul>            |
|                           | <ul> <li>Determine the difference between the actual measurement value and<br/>the emissions estimation value.</li> </ul> |
|                           | <ul> <li>Determine whether there is correlation between the emissions and<br/>product production capacity.</li> </ul>     |

#### **5.5.2** Inventory Inspection Data Uncertainty Management

(1) Emission source uncertainty quantitative analysis

Since the Company's 2023 GHG emissions are centralized at the emission sources of natural gas, vehicle gasoline, diesel and externally purchased electricity, and since the instrument accuracy and supporting documents for the activity data of other emission sources cannot be obtained easily, uncertainty quantitative assessment is performed mainly on the aforementioned four emission sources, as shown in Table 5.6.

#### A. Uncertainty analysis sources for activity data

- (A) For externally purchased electricity, it refers to the requirements specified in Section 8.1.4 of the Technical Specification of Verification and Inspection for Electricity Meters (CNMV 46, Edition 6) announced by the Bureau of Standards, Metrology and Inspection. When the mechanical and electronic electricity meter (watt-hour meter) exterior indicates "0.5), the verification tolerance is ±0.5% of the verification value. In addition, according to the statistics principle of two standard deviations, the verification tolerance of 1% is used as the uncertainty of this data.
- (B) For natural gas, it refers to the requirements specified in Section 4.7 of the Technical Specification of Verification and Inspection for Diaphragm Gas Meters (CNMV 31, Edition 5) announced by the Bureau of Standards, Metrology and Inspection. For gas meters, the verification tolerance is  $\pm 1.5\%$  of the verification value. In addition, according to the statistics principle of two standard deviations, the verification tolerance of 3% is used as the uncertainty of this data.
- (C) For the oil of vehicle gasoline and diesel, it refers to the requirements specified in Section 3.12 of the Technical Specification of Verification and Inspection for Oil Gauges (CNMV 117, Edition 3) announced by the Bureau of Standards, Metrology and Inspection. For oil gauges, the verification tolerance is ±0.5% of the verification value. In addition, according to the statistics principle of two standard deviations, the verification tolerance of 1% is used as the uncertainty

of this data.

- B. Uncertainty analysis sources for emission factors
  - (A) For the externally purchased electricity, since the Bureau of Energy has not yet announced the scope of uncertainty for its electricity emission factor, the incomplete data statistical system for the energy category announced in the IPC 1996 Edition of the GHG Emission Factor Management Table Version 6.0.4 is used to calculate the uncertainty, and the uncertainty of the emission factor is  $\pm 7\%$ .
  - (B) For natural gas, according to the recommended value of the Ministry of Environment in the GHG Emission Factor Management Table Version 6.0.4, the uncertainty of the emission factor is -3.2%/+3.9%.
  - (C) For the uncertainty of the emission factor of vehicle gasoline, according to the GHG Emission Factor Management Table Version 6.0.4 of the Ministry of Environment, the CO<sub>2</sub> upper limit of gasoline is +5.3%, and the lower limit is -2.6%. Such limits are used as the uncertainly of the emission factor of the gasoline.
  - (D) For the uncertainty of the emission factor of diesel of company vehicles and fork lift trucks, according to the GHG Emission Factor Management Table Version 6.0.4 of the Ministry of Environment, the CO<sub>2</sub> upper limit of diesel is +0.9%, and the lower limit is -0.2%. Such limits are used as the uncertainly of the emission factor of the diesel.

**Table 5.6 Uncertainty Quantitative Assessment Table** 

|                                                      | Uncerta                                                       | ainty of activity data                                                                                                                                                | CO <sub>2</sub> Emission factor uncertainty                |                                                                | Single emission<br>source<br>uncertainty               |
|------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|
| Emission<br>source                                   | Upper/<br>lower<br>limits of<br>95%<br>confidence<br>interval | Source                                                                                                                                                                | Upper/<br>lower limits<br>of 95%<br>confidence<br>interval | Source                                                         | Upper/lower<br>limits of 95%<br>confidence<br>interval |
| Company<br>vehicles<br>(Vehicle<br>gasoline)         | +1.00% to -1.00%                                              | Technical Specification<br>of Verification and<br>Inspection for Oil<br>Gauges (CNMV 117,<br>Edition 3) of the Bureau<br>of Standards, Metrology<br>and Inspection    |                                                            | GHG Emission<br>Factor<br>Management<br>Table Version<br>6.0.4 | +5.394%<br>~<br>-2.786%                                |
| Company<br>vehicles, fork<br>lift trucks<br>(diesel) | +1.00% to -1.00%                                              | Technical Specification<br>of Verification and<br>Inspection for Oil<br>Gauges (CNMV 117,<br>Edition 3)<br>of the Bureau of<br>Standards, Metrology<br>and Inspection | +0.90%<br>~<br>-0.20%                                      | GHG Emission<br>Factor<br>Management<br>Table Version<br>6.0.4 | +1.345%<br>~<br>-2.236%                                |

|             | +3.00% to -3.00% | of Verification and        |                              | <b>GHG</b> Emission |         |
|-------------|------------------|----------------------------|------------------------------|---------------------|---------|
|             |                  |                            |                              | Factor              | +4.920% |
| Natural Gas |                  | Inspection for             | +3.90%<br>~-3.20%            | Management          | ~       |
|             |                  | Diaphragm Gas Meters       | Diaphragm Gas Meters ~-3.20% |                     | -4.386% |
|             |                  | (CNMV 31, Edition 5)       |                              | 6.0.4               |         |
|             |                  | Technical Specification    |                              | <b>GHG</b> Emission |         |
| Externally  | +1.00% to        | of Verification and        | +7.00%                       | Factor              | +7.071% |
| purchased   | -1.00% to        | Inspection for Electricity | ~                            | Management          | ~       |
| electricity | -1.00%           | Meters (CNMV 46,           | -7.00%                       | Table Version       | -7.071% |
|             |                  | Edition 6)                 |                              | 6.0.4               |         |

**Table 5.7 Uncertainty Summary Classification Table** 

| Precision level | Uncertainty of sample average value (confidence interval expressed in %) |
|-----------------|--------------------------------------------------------------------------|
| High            | ±5%                                                                      |
| Good            | ±15%                                                                     |
| Normal          | ±30%                                                                     |
| Poor            | Exceeding 30%                                                            |

The Company's 2022 emissions data uncertainty analysis result is -4.82%/+4.82% (as shown in Table 5.8), and the data quality precision level is rated as "High".

Table 5.8 The Company's 2023 GHG Emissions Data Uncertainty Quantitative Assessment Result

| Sum of emissions absolute values of  | Sum of total                                  | Ratio of Uncertainty 95% uncertainty confidence interval       |             | •           |
|--------------------------------------|-----------------------------------------------|----------------------------------------------------------------|-------------|-------------|
| uncertainty assessment (metric tons) | emissions<br>absolute values<br>(metric tons) | quantitative<br>value over<br>emissions of<br>entire plant (%) | Lower limit | Upper limit |
| 5501.637                             | 5556.934                                      | 99.00%                                                         | -4.82       | +4.82       |

#### (2) Emission source uncertainty qualitative analysis

The Company performs uncertainty quantitative analysis on the emission sources of natural gas, vehicle gasoline, diesel and externally purchased electricity only. However, for all of the emission sources, their uncertainties are assessed according to the qualitative level score evaluation principle of uncertainty analysis, and the score evaluation principle is as shown in Table 5.9. For the uncertainty analysis of 44 types of emission sources of the Company in 2023, the qualitative level score evaluation table is as shown in Table 5.10.

The Company's 2023 emissions data uncertainty qualitative analysis result is as shown in Table 5.8, and the data quality qualitative level is rated as "Level 1".

For the uncertainty analysis of 44 types of emission sources of the Company in 2022, the qualitative level score evaluation table is as shown in Table 5.10

| Level Score<br>Evaluation               | 1                                                                                                                               | 2                                                                                                                                        | 3                                                                                                                                                           |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Activity data category level            | Continuous measurement                                                                                                          | Periodic (intermittent)<br>measurement                                                                                                   | Financial and accounting estimation                                                                                                                         |
| Activity data trust level               | External calibration is performed or multiple sets of data are available as supporting documents                                | Internal calibration is performed or certified via accounting audit                                                                      | No instrument calibration or no record summarization is performed                                                                                           |
| Emission<br>factor<br>category<br>level | Own factory development<br>factor/factor obtained from<br>mass balance approach,<br>same process/equipment<br>experience factor | Factor provided by<br>manufacturing plant, regional<br>emission factor                                                                   | National emission factor, international emission factor                                                                                                     |
| Final<br>evaluation<br>level            | Single emission source data error level (after multiplication of the aforementioned three levels )X<10 points                   | Single emission source data<br>error level (after<br>multiplication of the<br>aforementioned three<br>levels )10 points ≤ X<19<br>points | Single emission source data error level (after multiplication of the aforementioned three levels ) points $19 \text{ points} \leq X \leq 27 \text{ points}$ |

Table 5.10 The Company's Uncertainty Analysis Qualitative Level Score Evaluation Table

| No. | Field             | Category | Name                               | Activity<br>data<br>category<br>level | Activity<br>data<br>credibility<br>level | Emission<br>factor<br>category<br>level | Single<br>emission<br>source data<br>error level | Evaluation level |
|-----|-------------------|----------|------------------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------|
| 1   | Gangshan<br>Plant | 1        | Company vehicles (gasoline)        | 2                                     | 2                                        | 3                                       | 12                                               | 2                |
| 2   | Gangshan<br>Plant | 1        | Company vehicles (diesel)          | 2                                     | 2                                        | 3                                       | 12                                               | 2                |
| 3   | Gangshan<br>Plant | 1        | Fork lift truck (super diesel)     | 2                                     | 2                                        | 3                                       | 12                                               | 2                |
| 4   | Gangshan<br>Plant | 1        | Employees (septic tank escape)     | 3                                     | 2                                        | 3                                       | 18                                               | 2                |
| 5   | Gangshan<br>Plant | 1        | Non-employees (septic tank escape) | 3                                     | 2                                        | 3                                       | 18                                               | 2                |
| 6   | Gangshan<br>Plant | 1        | Coolant (R-134a)                   | 3                                     | 2                                        | 3                                       | 18                                               | 2                |
| 7   | Gangshan<br>Plant | 1        | Coolant (R-407C)                   | 3                                     | 2                                        | 3                                       | 18                                               | 2                |
| 8   | Gangshan<br>Plant | 1        | Coolant (R-410A)                   | 3                                     | 2                                        | 3                                       | 18                                               | 2                |
| 9   | Gangshan<br>Plant | 1        | Natural Gas                        | 1                                     | 2                                        | 3                                       | 6                                                | 1                |
| 10  | Gangshan<br>Plant | 1        | Emergency power generator (diesel) | 3                                     | 2                                        | 3                                       | 18                                               | 2                |
| 11  | Gangshan<br>Plant | 1        | Gas circuit<br>breakers/GCB        | 3                                     | 2                                        | 1                                       | 6                                                | 1                |
| 12  | Gangshan<br>Plant | 1        | Acetylene                          | 2                                     | 2                                        | 1                                       | 4                                                | 1                |
| 13  | Gangshan<br>Plant | 1        | WD-40 anti-rust oil                | 3                                     | 2                                        | 1                                       | 6                                                | 1                |
| 14  | Gangshan<br>Plant | 2        | Externally purchased electricity   | 1                                     | 2                                        | 3                                       | 6                                                | 1                |
| 15  | Luzhu<br>Plant    | 1        | Fork lift truck (super diesel)     | 2                                     | 2                                        | 3                                       | 12                                               | 2                |
| 16  | Luzhu<br>Plant    | 1        | Employees (septic tank escape)     | 3                                     | 2                                        | 3                                       | 18                                               | 2                |
| 17  | Luzhu<br>Plant    | 1        | Non-employees (septic tank escape) | 3                                     | 2                                        | 3                                       | 18                                               | 2                |
| 18  | Luzhu<br>Plant    | 1        | Coolant (R-134a)                   | 3                                     | 2                                        | 3                                       | 18                                               | 2                |
| 19  | Luzhu<br>Plant    | 1        | Coolant (R-410A)                   | 3                                     | 2                                        | 3                                       | 18                                               | 2                |
| 20  | Luzhu<br>Plant    | 1        | Natural Gas                        | 1                                     | 2                                        | 3                                       | 6                                                | 1                |
| 21  | Luzhu<br>Plant    | 1        | Emergency power generator (diesel) | 3                                     | 2                                        | 3                                       | 18                                               | 2                |
| 22  | Luzhu<br>Plant    | 1        | Gas circuit breakers/GCB           | 3                                     | 2                                        | 1                                       | 6                                                | 1                |
| 23  | Luzhu<br>Plant    | 1        | Acetylene                          | 2                                     | 2                                        | 1                                       | 4                                                | 1                |
| 24  | Luzhu<br>Plant    | 1        | WD-40 anti-rust oil                | 3                                     | 2                                        | 1                                       | 6                                                | 1                |
| 25  | Luzhu             | 2        | Externally purchased               | 1                                     | 2                                        | 3                                       | 6                                                | 1                |

|    | Plant                         |   | electricity                          |   |   |   |    |   |
|----|-------------------------------|---|--------------------------------------|---|---|---|----|---|
| 26 | Packaging<br>Plant            | 1 | Fork lift truck (super diesel)       | 2 | 2 | 3 | 12 | 2 |
| 27 | Packaging Plant               | 1 | Employees (septic tank escape)       | 3 | 2 | 3 | 18 | 2 |
| 28 | Packaging Plant               | 1 | Non-employees (septic tank escape)   | 3 | 2 | 3 | 18 | 2 |
| 29 | Packaging Plant               | 1 | Coolant (R-134a)                     | 3 | 2 | 3 | 18 | 2 |
| 30 | Packaging Plant               | 1 | Coolant (R-410A)                     | 3 | 2 | 3 | 18 | 2 |
| 31 | Packaging Plant               | 2 | Externally purchased electricity     | 1 | 2 | 3 | 6  | 1 |
| 32 | Bi-Metal<br>Material<br>Plant | 1 | Company vehicles (gasoline)          | 2 | 2 | 3 | 12 | 2 |
| 33 | Bi-Metal<br>Material<br>Plant | 1 | Employees (septic tank escape)       | 3 | 2 | 3 | 18 | 2 |
| 34 | Bi-Metal<br>Material<br>Plant | 1 | Non-employees (septic tank escape)   | 3 | 2 | 3 | 18 | 2 |
| 35 | Bi-Metal<br>Material<br>Plant | 1 | Coolant (R-134a)                     | 3 | 2 | 3 | 18 | 2 |
| 36 | Bi-Metal<br>Material<br>Plant | 1 | Coolant (R-410A)                     | 3 | 2 | 3 | 18 | 2 |
| 37 | Bi-Metal<br>Material<br>Plant | 1 | Emergency power generator (diesel)   | 3 | 2 | 3 | 18 | 2 |
| 38 | Bi-Metal<br>Material<br>Plant | 1 | Wires for electric welding operation | 3 | 2 | 1 | 6  | 1 |
| 39 | Bi-Metal<br>Material<br>Plant | 2 | Externally purchased electricity     | 1 | 2 | 3 | 6  | 1 |
| 40 | Zhunan<br>Plant               | 1 | Fork lift truck (super diesel)       | 2 | 2 | 3 | 12 | 2 |
| 41 | Zhunan<br>Plant               | 1 | Employees (septic tank escape)       | 3 | 2 | 3 | 18 | 2 |
| 42 | Zhunan<br>Plant               | 1 | Coolant (R-134a)                     | 3 | 2 | 3 | 18 | 2 |
| 43 | Zhunan<br>Plant               | 1 | Coolant (R-410A)                     | 3 | 2 | 3 | 18 | 2 |
| 44 | Zhunan<br>Plant               | 2 | Externally purchased electricity     | 1 | 2 | 3 | 6  | 1 |

**Table 5.11 The Company's 2023 Uncertainty Qualitative Assessment Result** 

| The Company's 2023 GHG Data Level Score Evaluation Result |                 |                                |                            |  |  |
|-----------------------------------------------------------|-----------------|--------------------------------|----------------------------|--|--|
| Level                                                     | Level 1 Level 2 |                                | Level 3                    |  |  |
| Score Range                                               | Y<10 noints     | 10 points $\leq X < 19$ points | 19 points $\leq X \leq 27$ |  |  |
| Score Range                                               | A<10 points     | To points = A < 1 > points     | points                     |  |  |
| Quantity                                                  | 14              | 30                             | 0                          |  |  |
| <b>Inventory List Level</b>                               |                 | Inventory List Level           | Level 1                    |  |  |
| <b>Total Average Score</b>                                | 0.21            | Inventory List Level           | Level 1                    |  |  |

Remarks: For average score of X<10, it is classified as Level 1; for average score of 10 points  $\le$  X<19 points, it is classified as Level 2; for average score of 19 points  $\le$  X $\le$  27 points, it is classified as Level 3.

#### **5.6 Inventory Data Preservation**

The accuracy of the 2023 emissions data has been improved significantly. The Company implements operations according to the inventory improvement plan established. With regard to the enhancement of the activity data accuracy, such as the filing and preservation of relevant records of purchase invoices, etc., and the externally purchased electricity statistical data, such data is used as supporting documents, in order to reduce the risk of inventory inspection and verification.

- For this Report, inventory list, data list and relevant supporting documents and forms, the preservation period is at least six years.
- For the public release of this Report, the valid period is up to any further revision or abolishment of this Report.

### Chapter 6 Report Verification

#### Internal verification:

The internal audit on the 2023 Sheh Kai Precision Co., Ltd. Carbon Inventory Report for Five Plant Sites was conducted at Gangshan Plant during 20240325~29. According to the report, for the carbon emissions data, documents and supporting information or data were verified one by one or randomly according to the report, and the internal audit was completed on 20240329.

#### External verification:

A third party BellCERT International Inspection and Certification Group - BellCERT Group Taiwan was entrusted to perform: external verification on the 2023 Sheh Kai Precision Co., Ltd. Carbon Inventory Report for Five Plant Sites.

| External Verification Unit Name | BellCERT International Inspection and Certification Group  BellCERT Group Taiwan |
|---------------------------------|----------------------------------------------------------------------------------|
| Field Verification Date         | First stage: 20240701, 20240705<br>Second stage: 20240717                        |

After the GHG external verification performed by BellCERT Group Taiwan, relevant GHG inventory data has been verified to comply with the ISO 14064-1:2018 standard, and the assurance level after verification as well as the Category 1 and Category 2 verification assurance level have been determined to be at the Reasonable Level of Assurance.

## Chapter 7 Report Management

- 1. This Report covers the period of January 1, 2023~December 31, 2023. The preparation frequency of this Report is once annually, and this Report is prepared mainly in accordance with ISO 14064-1:2018.
- 2. Limitation on issuance subject and publication: This Report refers to the Company's GHG Inventory Report, and it is publicly released after internal verification and after being verified and assured by a third party qualified external verification institution.
- 3. For the public release of this Report, the valid period is up to any further revision or abolishment of this Report.
- 4. For this Report, inventory list, data list and relevant supporting documents and forms, the preservation period is at least six years.
- 5. Report Preparation Unit Information

| Name   | R&D Center Chung-Jen Liu, Yung-Sheng Huang                    |
|--------|---------------------------------------------------------------|
| TEL    | 07-6225669 #313 #317                                          |
| E-mail | R&D Center cj.liu@shehkai.com.tw<br>gb79566597@shehkai.com.tw |